

Department of Biomedical Engineering

A gentle introduction to **Diffusion Models for Medical Image Analysis**

30.01.2024

Paul Friedrich, MSc

Julia Wolleb, PhD

Center for medical Image Analysis and Navigation (CIAN), University of Basel

A Quick Recap on Generative Modelling

Data samples

(e.g. Stanford Dogs)

A Quick Recap on Generative Modelling

Datapoints are *i.i.d.* samples of this underlying data distribution

We can define a parameterized distribution that we tune to be close to the data distribution

A Quick Recap on Generative Modelling

The Landscape of Deep Generative Models

Denoising Diffusion Models

Generative Adversarial Networks

Variational Autoencoders

Normalizing Flows

Energy-based Models

Autoregressive Models

Restricted Boltzmann Machines

Agenda

Introduction to Diffusion Models [~30 min]
 Physical Intuition & General Concepts
 Denoising Diffusion Probabilistic Models
 A Score-Based View on Diffusion Models

□ Advanced Topics [~30 min]

- □ Sampling Strategies
- □ Inference-time Conditioning
- Training-time Conditioning

- □ Applications in Medical Imaging [~30 min]
 - □ Synthesis
 - □ Inpainting
 - □ Segmentation
 - Anomaly Detection
 - Reconstruction
 - □ Registration

Acknowledgement

MICCAI 2023 - Tutorial

CVPR 2023 - Tutorial

Some slides are adopted/inspired by/copied from these very nice tutorials!

The Physical Intuition behind Diffusion Models

Deep Unsupervised Learning using
Nonequilibrium Thermodynamics

Jascha Sohl-Dickstein Stanford University	JASCHA@STANFORD.EDU
Eric A. Weiss University of California, Berkeley	EWEISS@BERKELEY.EDU
Niru Maheswaranathan Stanford University	NIRUM@STANFORD.EDU
Surya Ganguli Stanford University	SGANGULI@STANFORD.EDU

The Physical Intuition behind Diffusion Models (Macroscopic)

The dye density represents our probability density.

Goal: We want to *learn this probability density*

Observing this diffusion process:

- Original data distribution is perturbed over time
- Data distribution \rightarrow Uniform distribution (mapping to a simple distribution)

The Physical Intuition behind Diffusion Models (Macroscopic)

The dye density represents our probability density.

Goal: We want to *learn this probability density*

Observing this diffusion process:

- Original data distribution is perturbed over time
- Data distribution \rightarrow Uniform distribution (mapping to a simple distribution)

Can we learn to revert this process (run it backwards)?

- Uniform distribution \rightarrow Data distribution
- Yes, but we first need a way to model the system.

The Physical Intuition Behind Diffusion Models (Microscopic)

We can try to model the diffusion process by **modelling the Brownian motion** of single particles.

- We can observe that the position updates follow **small Gaussians**
- This holds true for the forward as well as the reverse process (for small enough Δt)
- We can define a known diffusion process with a chain of Gaussian position updates
- We try to learn the reverse process by estimating the mean and the covariance of the backward steps
- \rightarrow Same mechanism is used in the Diffusion Models we will see today!

Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models	Improved Denoising Diffusion Probabilistic Models	Diffusion Models Beat GANs on Image Synthesis
Jonathan Ho Ajay Jain Pieter Abbeel UC Berkeley UC Berkeley UC Berkeley jonathanho@berkeley.edu ajayj@berkeley.edu pabbeel@cs.berkeley.edu	Alex Nichol * 1 Prafulla Dhariwal * 1	Prafulla Dhariwal* Alex Nichol* OpenAI OpenAI prafulla@openai.com alex@openai.com
NeurIPS (2020)	ICML (2021)	NeurIPS (2021)

How do Diffusion Models work?

Diffusion Models consist of two main components:

- A *fixed forward diffusion process* that gradually adds noise to the image
- A learned reverse diffusion process that gradually removes noise from the image

Noise

Data

Reverse process

The Forward Diffusion Process

Noise

We model the **forward process** as a Markov chain:

$$q(x_{1:T}|x_0) = \prod_{t=1}^T q(x_t|x_{t-1})$$

with each transition being a parameterized Gaussian: $q(x_t|x_{t-1}) = N(\sqrt{1-\beta_t} x_{t-1}, \beta_t I)$

The Forward Diffusion Process

Noise

 $q(x_t|x_{t-1}) = N(\sqrt{1-\beta_t} x_{t-1}, \beta_t I)$

We define a variance schedule for β_t

 $q(x_T|x_0) \approx N(0, I)$

We usually choose $T \approx 1000$ (this remains a design choice)

The Forward Diffusion Process

We defined a forward process that transforms our data distribution to noise.

The Reverse Diffusion Process

Recall, the diffusion process is designed in a way that: $q(x_T) \approx N(0, I)$

- We could generate new samples by:
- Sampling x_T :

 $x_T \sim N(0, I)$

• Iteratively sample x_{t-1} for *T* timesteps:

$$x_{t-1} \sim q(x_{t-1}|x_t)$$

$$\xrightarrow{}$$
True denoising distribution \longrightarrow This distribution is unknown. Can we estimate it?

The Reverse Diffusion Process

YES! We can approximate the true denoising distribution (as a normal distribution) for small steps.

The Reverse Diffusion Process

We approximate the true denoising distribution $q(x_{t-1}|x_t)$ as being normal distributed:

$$p_{\theta}(x_{t-1}|x_t) = N(\mu_{\theta}(x_t, t), \sigma_t^2 \mathbf{I})$$

Mean is estimated by a neural network

Noise

How can we train such a model?

Keep in mind: $p_{\theta}(x_{t-1}|x_t) = N(\mu_{\theta}(x_t, t), \sigma_t^2 I)$

Ho et al. (2020) found that we can parameterize $\mu_{\theta}(x_t, t)$ as follows:

$$\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(x_t, t) \right)$$

with $\alpha_t \coloneqq 1 - \beta_t$ and $\bar{\alpha}_t \coloneqq \prod_{s=1}^t \alpha_s$.

the noise to be removed

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\overline{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T,, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

How can we train such a model?

1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla \epsilon \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 4$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta} \right)$	
6: until converged 6: return \mathbf{x}_0	Here $\mathbf{z} = 0$ $\frac{-\alpha_t}{-\overline{\alpha}_t} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) + \sigma_t \mathbf{z}$

Implementation Details

Keep in mind: We want to predict the noise to be removed from a corrupted image.

 $\epsilon_{\theta}(x_t, t)$ is usually implemented as a U-Net:

BUT, we could also use:

- Transformers
- VQ-VAEs
- ...

This remains a design choice.

Generating Samples

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\overline{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

Sample Quality

Samples from model trained on ImageNet (512 x 512)

Pros & Cons

Samples from model trained on CelebA-HQ (256 x 256)

Pros:

- + High sample quality & diversity
- + Build on a strong theoretical foundation
- + Easy and stable to train (just a simple MSE Loss + just one network)

Cons:

Very slow (sampling usually requires multiple model evaluations)
 → we will see some strategies to speed this process up

Playing Around with Diffusion Models

A Score-Based View on Diffusion Models

Stefano Ermon

Stanford University

ermon@cs.stanford.edu

Generative Modeling by Estimating Gradients of the Data Distribution

Yang Song Stanford University yangsong@cs.stanford.edu **Stefano Ermon** Stanford University ermon@cs.stanford.edu

SCORE-BASED GENERATIVE MODELING THROUGH STOCHASTIC DIFFERENTIAL EQUATIONS

Yang Song* Stanford University yangsong@cs.stanford.edu

abhishk@google.com

Abhishek Kumar

Google Brain

Jascha Sohl-DicksteinDiederik P. KingmaGoogle BrainGoogle Brainjaschasd@google.comdurk@google.com

Google Brain durk@google.com

Ben Poole Google Brain pooleb@google.com Score-Based Diffusion Models

Maximum Likelihood Training of

Yang Song* Computer Science Department Stanford University yangsong@cs.stanford.edu

Iain Murray

School of Informatics

University of Edinburgh

i.murray@ed.ac.uk

Conor Durkan* School of Informatics University of Edinburgh conor.durkan@ed.ac.uk

Stefano Ermon Computer Science Department Stanford University ermon@cs.stanford.edu

NeurIPS (2021)

ICLR (2021)

What do we mean when talking about a score function?

The score function preserves all information of the density function, but is much easier to handle \rightarrow why?

Score functions bypass the normalizing constant

We always need to ensure normalization.

Score function doesn't rely on normalizing constant.

Can we estimate such a score function from data?

We know it's possible to train a properly normalized statistical model to estimate the data density function using maximum likelihood \rightarrow can we do something similar to estimate a score function/model?

Given (Data): $\{x_1, x_2, ..., x_N\} \sim p_{data}(x)$ Goal (Score function): $\nabla_x \log p_{data}(x)$

We can't compute this as we don't know $p_{data}(x)$

Score model: $s_{\theta}(\mathbf{x}): \mathbb{R}^d \to \mathbb{R}^d \approx \nabla_{\mathbf{x}} \log p_{data}(\mathbf{x})$

Objective:

 $\mathbb{E}_{p_{data}(x)}[\|\nabla_x \log x - s_{\theta}(x)\|_2^2]$ (Fisher divergence to compare the vector fields)

Score matching

There exists a so-called **score matching objective**, that is similar to the Fisher divergence (up to a constant):

$$\mathbb{E}_{p_{data(x)}} \left[\frac{1}{2} \| s_{\theta}(x) \|_{2}^{2} + trace(\nabla_{x} s_{\theta}(x)) \right] \longrightarrow \begin{array}{c} \text{doesn't rely on the} \\ \text{ground truth score} \end{array}$$

As a constant doesn't matter for optimization, this score matching objective defines the same optimum as the Fisher divergence and can **effectively be estimated by the empirical mean over the training data set**:

$$\approx \frac{1}{N} \sum_{i=1}^{N} \left[\frac{1}{2} \| s_{\theta}(x_i) \|_2^2 + trace(\nabla_x s_{\theta}(x_i)) \right]$$

Journal of Machine Learning Research 6 (2005) 695–709 Submitted 11/04; Revised 3/05; Published 4/05

Estimation of Non-Normalized Statistical Models by Score Matching

 Aapo Hyvärinen
 AAPO.HYVARINEN@HELSINKI.FI

 Helsinki Institute for Information Technology (BRU)
 Department of Computer Science

 FIN-00014 University of Helsinki, Finland
 Helsinki

https://andrewcharlesjones.github.io/journal/21-score-matching.html

Modelling the Diffusion Process with SDEs

Modelling the Diffusion Process with SDEs

If we can model this score function, we can solve the reverse SDE using Euler, Milstein or Runge-Kutta method.

https://yang-song.net/blog/2021/score/ (More information on this very nice blog post)

□ Introduction to Diffusion Models [~30 min]

□ Physical Intuition & General Concepts

Denoising Diffusion Probabilistic Models

A Score-Based View on Diffusion Models

□ Advanced Topics [~30 min]

Sampling Strategies

□ Inference-time Conditioning

□ Training-time Conditioning

- □ Applications in Medical Imaging [~30 min]
 - □ Synthesis
 - □ Inpainting
 - Segmentation
 - Anomaly Detection
 - Reconstruction
 - Registration

Fake Image Generation

Schedulers: How to Accelerate Sampling?

Published as a conference paper at ICLR 2021

DENOISING DIFFUSION IMPLICIT MODELS

Jiaming Song, Chenlin Meng & Stefano Ermon Stanford University {tsong,chenlin,ermon}@cs.stanford.edu

ABSTRACT

Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps in order to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a particular Markovian diffusion process. We generalize DDPMs via a class of non-Markovian diffusion processes that lead to the same training objective. These non-Markovian "Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation, yet they require simulating a Markov chain for many steps in order to produce a sample."

We need to make the generation process faster.
From DDPMs to DDIMs

$$\boldsymbol{x}_{t-1} = \sqrt{\alpha_{t-1}} \underbrace{\left(\frac{\boldsymbol{x}_t - \sqrt{1 - \alpha_t} \epsilon_{\theta}^{(t)}(\boldsymbol{x}_t)}{\sqrt{\alpha_t}}\right)}_{\text{"predicted } \boldsymbol{x}_0\text{"}} + \underbrace{\sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \epsilon_{\theta}^{(t)}(\boldsymbol{x}_t)}_{\text{"direction pointing to } \boldsymbol{x}_t\text{"}} + \underbrace{\sigma_t \epsilon_t}_{\text{random noise}}$$

DDPM sampling scheme

$$\sigma_t = \sqrt{(1 - \alpha_{t-1})/(1 - \alpha_t)}\sqrt{1 - \alpha_t/\alpha_{t-1}}$$

DDIM sampling scheme

We remove the random component

The training process stays the same.

An Excursion into ODEs

• The connection to ordinary differential equations (ODEs) can be seen when we rewrite the DDIM denoising step as

- This can be interpreted as the Euler approximation of an ODE.
- DDIM is a **probability flow** ODE from a SDE [1].
- We can speed up the generation process by choosing a larger step size.

Faster, but less accurate

DDIM Accelerated Sampling

- By skipping k steps, we have a step size of $k\Delta t$.
- Sampling is *k* times faster.
- We trade image quality for speed.

Various Schedulers...

Elucidating the Design Space of Diffusion-Based Generative Models

PSEUDO NUMERICAL METHODS FOR DIFFUSION MODELS ON MANIFOLDS

Luping Liu, Yi R Zhejiang Universi {luping.liu, benoising samples su to thousan successfull Improved (e.g., Den ation meth

Published as a conference paper at ICLR 2022

PROGRESSIVE DISTILLATION FOR FAST SAMPLING OF DIFFUSION MODELS

Tim Salimans & Jonathan Ho Google Research, Brain team {salimans,jonathanho}@google.com

ABSTRACT

Diffusion models have recently shown great promise for generative modeling, outperforming GANs on perceptual quality and autoregressive models at density estimation. A remaining downside is their slow sampling time: generating high quality samples takes many hundreds or thousands of model evaluations. Here we make two contributions to help eliminate this downside: First, we present new parameterizations of diffusion models that provide increased stability when using few sampling steps. Second, we present a method to distill a trained deterministic diffusion sampler, using many steps, into a new diffusion model that takes half as many carpoing the two processions and the procession of the steps of the steps

- Choosing a different solver for the given ODE can improve speed and image quality.
- Other numerical approaches such as Heun's Method or Runge Kutta solvers can be explored.
- Knowledge distillation techniques can be used for fast sampling.

Diffusion Models in the Latent Space

□ Introduction to Diffusion Models [~30 min]

Physical Intuition & General Concepts

Denoising Diffusion Probabilistic Models

A Score-Based View on Diffusion Models

□ Advanced Topics [~30 min]

Sampling Strategies

Inference-time Conditioning

□ Training-time Conditioning

"mouse"

Diffusion Model

- □ Applications in Medical Imaging [~30 min]
 - □ Synthesis
 - □ Inpainting
 - Segmentation
 - Anomaly Detection
 - Reconstruction
 - Registration

Example: Classifier Guidance

We want a class-conditional diffusion model.

We consider the gradient with respect to the input pixels.

https://corochann.com/library-release-visualize-saliency-map-of-deep-neural-network-644/

Classifier Guidance

We use the gradient to guide the generation process towards a desired class.

Gradient guidance is not restricted to classification models. Other models (e.g., regression, segmentation, ...) work just in the same way.

Classifier Guidance

goldfish

arctic fox

butterfly

African elephant

flamingo

tennis ball

cheeseburger

fountain

balloon

tabby cat

lorikeet

agaric

Check out this very nice tutorial: https://sander.ai/2022/05/26/guidance.html

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in neural information processing systems 34 (2021): 8780-8794.

Image-to-image translation

We might want to translate an image to another...

- We add *L* steps of noise to an input image x_0 .
- The smaller *L*, the less the image can be changed.
- The higher *L*, the more information is destroyed.

We need to find a way to keep the information of x_0 .

We consider Denoising Diffusion Implicit Models (DDIMs).

DDIM Inversion

- Under the DDIM sampling scheme, we remove the random component.
- The connection to ordinary differential equations (ODEs) can be seen when we rewrite the denoising step as

$$\frac{x_{t-1}}{\sqrt{\bar{\alpha}_{t-1}}} = \frac{x_t}{\sqrt{\bar{\alpha}_t}} + \left(\sqrt{\frac{1-\bar{\alpha}_{t-1}}{\bar{\alpha}_{t-1}}} - \sqrt{\frac{1-\bar{\alpha}_t}{\bar{\alpha}_t}}\right)\epsilon_\theta(x_t, t).$$
 noise decoding

- This can be interpreted as the Euler approximation of an ODE.
- Given infinitely small steps t, the reversed ODE can then be solved with

$$\frac{x_{t+1}}{\sqrt{\bar{\alpha}_{t+1}}} = \frac{x_t}{\sqrt{\bar{\alpha}_t}} + \left(\sqrt{\frac{1-\bar{\alpha}_{t+1}}{\bar{\alpha}_{t+1}}} - \sqrt{\frac{1-\bar{\alpha}_t}{\bar{\alpha}_t}}\right)\epsilon_\theta(x_t, t).$$
 noise encoding

Image Interpolation

DDIM Inversion & Gradient Guidance

□ Introduction to Diffusion Models [~30 min]

□ Physical Intuition & General Concepts

Denoising Diffusion Probabilistic Models

A Score-Based View on Diffusion Models

□ Advanced Topics [~30 min]

Sampling Strategies

□ Inference-time Conditioning

□ Training-time Conditioning

"mouse"

Diffusion Model

- □ Applications in Medical Imaging [~30 min]
 - □ Synthesis
 - □ Inpainting
 - Segmentation
 - Anomaly Detection
 - Reconstruction
 - Registration

Scalar Conditioning via Spatial Addition

- We train a class-conditional diffusion model by including a class label *c*.
- We compute a class embedding, and pass it to the residual blocks by spatial addition.

51

Scalar Conditioning via Adaptive Group Normalization

- Similar to StyleGAN, we add time and class information using a group normalization layer.
- This happens in all residual blocks of the U-Net.

Classifier-free Guidance

Check out this very nice tutorial: https://sander.ai/2022/05/26/guidance.html

Ho, J., & Salimans, T. (2021). Classifier-Free Diffusion Guidance. In NeurIPS 2021 Workshop

Image Conditioning through Concatenation

- For image generation of a fake image *x*, we can use a conditioning image *y*.
- This requires **paired** training.
- During training and sampling, we add information of the conditioning image *x* through **channel-wise concatenation**.

Image Conditioning through Concatenation

Palette: Image-to-Image Diffusion Models

Text Conditioning

"A small cactus wearing a straw hat and neon sunglasses in the Sahara desert."

CLIP Dall-E Stable Diffusion

Diffusion Model embedding An alien octopus floats Text through a portal reading a encoder newspaper. Text

. . .

Imagen

Architecture - Conditioning

Text Conditioning

Text Conditioning

Teddy bears swimming at the Olympics 400m Butter- A cute corgi lives in a house made out of sushi. fly event.

A brain riding a rocketship heading towards the moon. A dragon fruit wearing karate belt in the snow.

ControlNet

- We pretrain a diffusion model with text prompts.
- We freeze this model.
- We fine-tune a copy conditioned on *c*.
- We pass information to the frozen model through skip connections.

ControlNet

conditioning image

DreamBooth

Introduction to Diffusion Models [~30 min]
Physical Intuition & General Concepts
Denoising Diffusion Probabilistic Models
A Score-Based View on Diffusion Models

□ Advanced Topics [~30 min]

- □ Sampling Strategies
- □ Inference-time Conditioning
- □ Training-time Conditioning

Applications in Medical Imaging [~30 min]
Synthesis
Inpainting
Segmentation
Anomaly Detection
Reconstruction
Registration

Image Synthesis

Examples from the Community

Real

Synthetic

Why? Medical Images are Rare!

Use of Synthetic Data

What can we use generated images for?

- Full private training
- Data augmentation
- Testing edge cases

Evaluation Criteria:

- Realism
- Diversity
- Privacy

Generating High-Resolution 3D Brain Data

Latent Diffusion Model trained on data from UK Biobank (N = 31,740)

 Allows for the generation of T1-weighted brain MR images with a resolution of 160 x 224 x 160

Can be conditioned on covariates like:

- Age
- Gender
- Ventricular and Brain volumes

High-Resolution 3D Medical Image Generation with LDMs

Khader, F., et al. (2023) Denoising diffusion probabilistic models for 3D medical image generation. In Scientific Reports

Fine-Tuning Stable Diffusion

Fine Tuned Stable Diffusion pipeline for text-conditioned chest X-Ray generation

• U-Net and Text Encoder are jointly fine-tuned on the MIMIC-CXR dataset

Generation of Anonymous Chest Radiographs

Privacy enhanced sampling strategy for conditional chest X-Ray generation

- Generated images are not per se private, as generative models may memorize training examples
- 1) Generate Image 2) Find most similar one from training data 3) Verify if patient is the same → include/exclude

Mass

Cardiomegaly

Synthetic Data Augmentation

- 1) Pre-training an unconditional Latent Diffusion Model on a large unlabeled dataset
- 2) Conditional fine-tuning on an unseen labeled (small) dataset through a latent classifier
- 3) Selection of the highly-confident synthetic samples based on feature similarity with real data
Synthetic Image Augmentation – Performance Gain

- Diffusion models can scalably generate images of skin disease and training models with that augmented data improves performance in data-limited settings
- Performance gains (in this setting) saturate at a synthetic-to-real ratio of 10:1 and is substantially smaller than the gains obtained by adding real images → collection of diverse real data remains more important

Synthetic Data for Distribution Shifts – Improving Fairness in AI

- Learning realistic augmentations from data is possible in a label-efficient manner using diffusion models
- Unlabeled data can be used to capture the data distribution of different conditions and subgroups → steer the distribution of synthetic examples according to specific requirements
- Learned augmentations can surpass heuristic, manually implemented ones by making models more robust and statistically fair in- and out- of-distribution

Synthesising Rare Samples – Testing Edge Cases

• Diffusion model is used to **synthesize rare cases** in instrument classification in cataract surgery

• Performance gain of > 10% for rare cases

Inpainting

Examples from the Community

Point Cloud Diffusion Models for Automatic Implant Generation

- Implant generation as shape completion task (basically 3D inpainting)
- Applying the diffusion model to high-resolution volumes (512 x 512 x 512) is impossible due to limited GPU memory
- Diffusion models can be applied to a wide variety of different data types (like point clouds)

Point Cloud Completion with Diffusion Models

Friedrich, P., et al. (2023) "Point Cloud Diffusion Models for Automatic Implant Generation." MICCAI 2023.

Image Segmentation

Examples from the Community

Diffusion Models for Segmentation Mask Generation

The anatomical information is added by concatenating the input images b to the noisy segmentation mask $x_{b,t}$ in every step t.

Wolleb et al (2022). Diffusion Models for Implicit Image Segmentation Ensembles, MIDL 2022. arXiv:2112.03145

Generation of Segmentation Ensembles

3D Segmentation with PatchDDM

- We add a position encoding in all 3 spatial dimensions.
- Training is on patches only, and saves memory and training time.
- Inference runs over the whole 3D volume.

Bieder et al. (2023) Memory-Efficient 3D Denoising Diffusion Models for Medical Image Processing. MIDL

Ambiguous Segmentation

- Ambiguity Modelling Network (AMN) models the distribution of ground truth masks given an input image.
- Ambiguity Controlling Network (ACN) models the noisy output from the diffusion model conditioning on an input image.

Segmentation with Diffusion Pre-training

Anomaly Detection

Examples from the Community

Unsupervised Anomaly Segmentation

Latent Diffusion Model (LDM) learns the distribution of healthy brain data Compression (VQ-VAE) scales for high-resolution images

LDM identify regions with a low likelihood of being part of the healthy dataset

Reverse/denoising process is used to **inpaint** these regions and "**heal**" the possible anomalies

Anomaly Detection with Simplex Noise

- Typical Gaussian noise is found to be insuffient for anomaly detection.
- Therefore, we explore the use of simplex noise for the corruption and sample generation of medical images.

(a) Structures of simplex noise

Wyatt et al (2022) AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic Models using Simplex Noise. CVPR workshop

Anomaly Detection with Coarse Noise

Anomaly Detection from Patches

Mask, Stitch, and Re-Sample

90

Weakly Supervised Lesion Detection

Goal: Pixel-wise anomaly detection using image-level labels only

Weakly Supervised Lesion Detection

Weakly Supervised Lesion Detection

Lesion Localization with Classifier-free Guidance

Image Reconstruction

Examples from the Community

Score-based Diffusion Models for Accelerated MRI

Undersampled MR Reconstruction via Diffusion Model Sampling

K-space Cold Diffusion

Image-to-Image Translation

Examples from the Community

MRI Contrast Translation

Diffusion Models for Contrast Harmonization

Contrast Harmonization Results

Ground Truth

Diffusion Model Output

3D Shapes from 2D Microscopy

3D with 2D model

Image Registration

Examples from the Community

DiffuseMorph

Kim et al (2022). DiffuseMorph: Unsupervised Deformable Image Registration Along Continuous Trajectory Using Diffusion Models. ECCV 2022

Thank you!

Center for medical Image Analysis & Navigation (CIAN), Prof. Philippe C. Cattin Universität Basel

Useful Key References, Gits to Watch, etc.

Surveys

- https://arxiv.org/abs/2209.02646
- https://arxiv.org/abs/2209.00796

Github

https://github.com/heejkoo/Awesome-Diffusion-Models

Tutorials

- https://cvpr2022-tutorial-diffusion-models.github.io
- https://huggingface.co/blog/annotated-diffusion
- https://huggingface.co/docs/diffusers