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A Quick Recap on Generative Modelling
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A Quick Recap on Generative Modelling

Q

Data distribution Model distribution

(unknown)

Datapoints are i.i.d. samples We can define a parameterized distribution
of this underlying data distribution that we tune to be close to the data distribution
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A Quick Recap on Generative Modelling

Sampling Probability evaluation

Model distribution
= Generative Model

Novel data points High Low
probability probability
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The Landscape of Deep Generative Models

Denoising Diffusion Models

D N Generative Adversarial Networks

». ., Variational Autoencoders

B



Agenda

O Introduction to Diffusion Models [~30 min]
Q Physical Intuition & General Concepts
U Denoising Diffusion Probabilistic Models
L A Score-Based View on Diffusion Models

0 Advanced Topics [~30 min]
0 Sampling Strategies
U Inference-time Conditioning
QU Training-time Conditioning

O Applications in Medical Imaging [~30 min]

pooooou

Synthesis
Inpainting
Segmentation
Anomaly Detection
Reconstruction
Registration
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The Physical Intuition behind Diffusion Models

Deep Unsupervised Learning using
Nonequilibrium Thermodynamics

Jascha Sohl-Dickstein JASCHA @ STANFORD.EDU
Stanford University
Eric A. Weiss EWEISS @ BERKELEY.EDU

University of California, Berkeley

Niru Maheswaranathan NIRUM @ STANFORD.EDU
Stanford University
Surya Ganguli SGANGULI@STANFORD.EDU
Stanford University

PMLR (2015)
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The Physical Intuition behind Diffusion Models (Macroscopic)

The dye density represents our probability density.
Goal: We want to learn this probability density
Observing this diffusion process:

« Oiriginal data distribution is perturbed over time

« Data distribution — Uniform distribution (mapping to a simple distribution)
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The Physical Intuition behind Diffusion Models (Macroscopic)

The dye density represents our probability density.
Goal: We want to learn this probability density
Observing this diffusion process:

« Oiriginal data distribution is perturbed over time

« Data distribution — Uniform distribution (mapping to a simple distribution)

Can we learn to revert this process (run it backwards)?

* Uniform distribution — Data distribution

* Yes, but we first need a way to model the system.
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The Physical Intuition Behind Diffusion Models (Microscopic)

We can try to model the diffusion process by modelling the
Brownian motion of single particles.
« We can observe that the position updates follow small Gaussians

« This holds true for the forward as well as the reverse process
(for small enough At)

« We can define a known diffusion process with a chain of Gaussian
position updates

« We try to learn the reverse process by estimating the mean and the
covariance of the backward steps

— Same mechanism is used in the Diffusion Models we will see today!
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Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Improved Denoising Diffusion Probabilistic Models Diffusion Models Beat GANs on Image Synthesis

Alex Nichol ! Prafulla Dhariwal *!
Jonathan Ho Ajay Jain Pieter Abbeel Prafulla Dhariwal* Alex Nichol*
UC Berkeley UC Berkeley UC Berkeley OpenAl OpenAl

jonathanho@berkeley.edu ajayj@berkeley.edu pabbeel@cs.berkeley.edu prafullaopenai . com alexQopenai.com

NeurlPS (2020) ICML (2021) NeurlPS (2021)
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How do Diffusion Models work?

Diffusion Models consist of two main components:

» A fixed forward diffusion process that gradually adds noise to the image
» A learned reverse diffusion process that gradually removes noise from the image

Forward process

»
>

A

Reverse process
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The Forward Diffusion Process

o A A A A A

T
We model the forward process as a Markov chain: q(xi7lxe) = l_[ q(xlxe—q1)
t=1

with each transition being a parameterized Gaussian:  q(x¢lxt-1) = N(y 1 — B¢ x¢—1, B¢1)
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The Forward Diffusion Process

q(xelxe_1) = NG/1 = Br xt-1, BeI)

We define a variance schedule for f3; q(xr|xg) = N(0,I)

We usually choose T = 1000 (this remains a design choice)
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The Forward Diffusion Process

Diffused Data Distributions
Data Noise

a(xo) a(x,) a(x;) a(x3) a (1)

We defined a forward process that transforms our data distribution to noise.
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The Reverse Diffusion Process

Recall, the diffusion process is designed in a way that: Diffused Data Distributions ,
Data Noise
Q(xT) ~ N(Or I)

We could generate new samples by:

« Sampling x;:

xT"’N(O, I)

d(xo) a(x,) a(x) a(xs) a(xy)
 lteratively sample x;_; for T timesteps:

Xe—1~q(xXp—1]x¢)
[ | 7 J

True denoising distribution »  This distribution is unknown. Can we estimate it?
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The Reverse Diffusion Process

YES! We can approximate the true denoising distribution (as a normal distribution) for small steps.

Diffused
Data Distribution

True Denoising
Distribution

> 1

q() q(z)) q() q(z5) ‘1(14)
—
£ O O C O
)
(I(m4|$5:X)
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The Reverse Diffusion Process

he, G 2 P G Ji

We approximate the true denoising distribution q(x;_,|x;) as being normal distributed:

po (xr—1lx¢) = N(ug(x, t), Utzl)
\_'_l

Mean is estimated by a neural network

Diffusion Models in Medical Imaging, 30.01.2024 University of Basel 19



How can we train such a model?
Keep in mind: pg(x¢_11x¢) = N(ug(x, t), 6£1)

Ho et al. (2020) found that we can parameterize g (x;, t) as follows:

1
to (x¢, t) = \/_“_t(Xt - 1'3—_tat59 (Xt t))

with @, == 1— B, and @, = [}, .. the noise to be removed

Algorithm 1 Training Algorithm 2 Sampling
é; repeat (x0) 1: xr ~ N(0,T)
- Xo ™~ g(Xo 2: fort=T,...,1do
i= t~ ‘j{;l(l(fffll)n({l’ cos T 3z~ N(0,I)ift > 1,elsez =0
. €Enrv y —«
5: Take gradient descent step on 4 X = \/% Xt — \}ﬁeb’(xt,t)) + o1z
Vo H€—€9(\/67th+\/1——54t6,t)||2 5: end for
6: return xo

6: until converged
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How can we train such a model?

MSE

Algorithm 1 Training Algorithm 2 Sampling
1: repeat 1: %z ~ N(0,T)
2 Xo ~ g(xo) 2: fort="T,...,1do
3: ¢~ Uniform({1,...,T}) 3: z~N(0,I)ift > 1,elsez=0
4. e~ N(0,I) ) o
5: Take gradient descent step on 4 X1 = Vs \Xt T —t—ﬁﬁo (Xtyt)) + o1z
Vo He—ee(\/c_}:th-i-\/l—&te,t)”2 5: end for
6: until converged 6: return xo
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Implementation Details

Keep in mind: We want to predict the noise to be removed from a corrupted image.

€g (x¢, t) is usually implemented as a U-Net:
BUT, we could also use:

 Transformers
) ) « VQ-VAEs
& "?/ °
g 2
: This remains a design choice.

Skip Connection

Diffusion Models in Medical Imaging, 30.01.2024 University of Basel 22



Generating Samples

For T timesteps

Diffusion

Model

Algorithm 1 Training Algorithm 2 Sampling
;‘ repeat (x0) 1: xr ~ N(0,T)
¢ X0~ g{Xo 2: fort=1T,...,1do
4311 t~ ‘j{;l(l(f)"lif)n({l’ s T}) 3. z~N(O,I)ift > 1 elsez=0
C e , o
5: Take gradient descent step on 4 X1 = \/% Xt — \}T—aﬁea (x“t)) + o0z
Vo ||€—69(\/&,5X0+\/1—at6,t)”2 5: end for
6: 6: return xo

until converged
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Sample Quality

Samples from model trained on ImageNet (512 x 512)

Diffusion Models in Medical Imaging, 30.01.2024 University of Basel 24



Pros & Cons

Pros:
+ High sample quality & diversity

+ Build on a strong theoretical foundation
+ Easy and stable to train (just a simple MSE Loss + just one network)
Cons:

— Very slow (sampling usually requires multiple model evaluations)
— we will see some strategies to speed this process up

Samples fro‘rﬁodel trained on
CelebA-HQ (256 x 256)

Diffusion Models in Medical Imaging, 30.01.2024 University of Basel 25



Playing Around with Diffusion Models

\ 4

D § ffusers

Generative Models
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A Score-Based View on Diffusion Models

Generative Modeling by Estimating Gradients of the
Data Distribution

Yang Song Stefano Ermon
Stanford University Stanford University
yangsong@cs.stanford.edu ermon@cs.stanford.edu

NeurlPS (2019)

SCORE-BASED GENERATIVE MODELING THROUGH
STOCHASTIC DIFFERENTIAL EQUATIONS

Yang Song* Jascha Sohl-Dickstein Diederik P. Kingma
Stanford University Google Brain Google Brain
yangsong@cs.stanford.edu jaschasd@google.com durk@google.com
Abhishek Kumar Stefano Ermon Ben Poole

Google Brain Stanford University Google Brain
abhishk@google.com ermon@cs.stanford.edu pooleb@google.com

ICLR (2021)

Maximum Likelihood Training of
Score-Based Diffusion Models

Yang Song* Conor Durkan*
Computer Science Department School of Informatics
Stanford University University of Edinburgh
yangsong@cs.stanford.edu conor.durkan@ed.ac.uk
Tain Murray Stefano Ermon
School of Informatics Computer Science Department
University of Edinburgh Stanford University
i.murray@ed.ac.uk ermon@cs.stanford.edu

NeurlPS (2021)
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What do we mean when talking about a score function?

p(x)
Probability density function

A

Take derivative Solve integral

v

V,logp(x) Score function represents
Score function the probability distribution

Probability density function (color coded)
The score function preserves all Score function (vector field)
information of the density function, but is
much easier to handle — why?
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Score functions bypass the normalizing constant

© O ©
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10 _5 0 5 10 -10*

Probability density function Score function

o efo) Vi logpe(x) = Vafe(x) _tV_x-l(ig-Ze_ '
Po®) @ = pe(x)
= Vyefo(x) — 0

We always need to ensure normalization. Score function doesn’t rely on normalizing constant.
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Can we estimate such a score function from data?

We know it’s possible to train a properly normalized statistical model to estimate the data density function
using maximum likelihood — can we do something similar to estimate a score function/model?

Given (Data):
Goal (Score function):
Score model:

Objective:

Vx log Pdata (x)

|7x log Pdata (.X')

NN NS/
N\ NS S

<
\

R\ /
. /

7\

N
\
N\

{x1,x2, .., XN} ~ Paara (X)

sg(x): RY > R? = Ve log Daara (X)

A

sp(x)

Ep,...colllVxlog @a(x) —sg(®)|I13] (Fisher divergence to compare the vector fields)

NN\
S NS

—_—— ——  —

S
il e

\
\

-

N

We can’t compute this as we don’t Know p;4¢4(%)
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Score matching

There exists a so-called score matching objective, that is similar to the Fisher divergence (up to a constant):

doesn’t rely on the

1
E —Sx2+traceVSx]—>
Pdata(x) | 9 5o GOl (Vs (1)) ground truth score

As a constant doesn’t matter for optimization, this score matching objective defines the same optimum as the
Fisher divergence and can effectively be estimated by the empirical mean over the training data set:

N
1 1
~ Nz [E lsg (x5 + trace(V,sg (xl-))]
i=1

Journal of Machine Learning Research 6 (2005) 695-709 Submitted 11/04; Revised 3/05; Published 4/05

Estimation of Non-Normalized Statistical Models
by Score Matching

https://andrewcharlesjones.qgithub.io/journal/21-score-matching.html

Aapo Hyviarinen AAPO.HYVARINEN@HELSINKI.FI
Helsinki Institute for Information Technology (BRU)

Department of Computer Science

FIN-00014 University of Helsinki, Finland
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Modelling the Diffusion Process with SDEs

Forward SDE (data — noise)

x(0 dx = f(x, t)dt + g(t)dw

Y Y

Diffusion Models in Medical Imaging, 30.01.2024 University of Basel 32



Modelling the Diffusion Process with SDEs

—— Reverse stochastic process

R

£) — *(t) Vx logpu(x))dt + g(t)dw

If we can model this score function, we can solve the
reverse SDE using Euler, Milstein or Runge-Kutta method.

https://yang-song.net/blog/2021/score/ (More information on this very nice blog post)
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Agenda

O Introduction to Diffusion Models [~30 min]
Q Physical Intuition & General Concepts
U Denoising Diffusion Probabilistic Models
L A Score-Based View on Diffusion Models

0 Advanced Topics [~30 min]
U Sampling Strategies

Q Inference-time Conditioning
U Training-time Conditioning

O Applications in Medical Imaging [~30 min]

poocooo

Synthesis
Inpainting
Segmentation
Anomaly Detection
Reconstruction
Registration
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Fake Image Generation

synthetic image

. —* X714 > X1—p —* ...

xT~N(O, I) xO

U-Net

1 1— (8% .
Ti—1 N (xt meg(zct )) + o€, withe (0,I)
\

Random component

Diffusion Models in Medical Imaging, 30.01.2024 University of Basel 35



Schedulers: How to Accelerate Sampling?

800 700 600 500 400 300

1000 900

Published as a conference paper at ICLR 2021

DENOISING DIFFUSION IMPLICIT MODELS

Jiaming Song, Chenlin Meng & Stefano Ermon
Stanford University
{t song, chenlin, ermon}@cs .stanford.edu

ABSTRACT

Denoising diffusion probabilistic models (DDPMs) have achieved high qual-
ity image generation without adversarial training, yet they require simulating a
Markov chain for many steps in order to produce a sample. To accelerate sam-
pling, we present denoising diffusion implicit models (DDIMs), a more efficient
class of iterative implicit probabilistic models with the same training procedure as
DDPMs. In DDPMs, the generative process is defined as the reverse of a particular
Markovian diffusion process. We generalize DDPMs via a class of non Markovian
diffusion processes that lead to the same training objective. These non-Markovian

100

"Denoising diffusion probabilistic
models (DDPMs) have achieved high
quality image generation, yet they
require simulating a Markov chain for
many steps in order to produce a
sample."”

We need to make the
generation process faster.

Diffusion Models in Medical Imaging, 30.01.2024
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From DDPMs to DDIMs

(t)
r: — V11—« €T

()
\/ait t " €p (iBt)J—F O¢€¢

- - — . . " random noise
~~ direction pointing to @
“ predicted xo”
DDPM sampling scheme g — \/(1 - Qt—l)/(l — at)\/l — at/at—l
DDIM sampling scheme or = 0 :> We remove the random component

The training process stays the same.

Song, J., Meng, C., & Ermon, S. (2020). Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502. unversiyof Basel 37



An Excursion into ODEs

« The connection to ordinary differential equations (ODEs) can be seen when we rewrite the
DDIM denoising step as

Tt—1 Tt 1 — p_1 1 — Q¢
= — — — €g(xs. ).
\/ Yt —1 \/ (V¢ Vr—1 ¢
icti previous step size derivative
prediction value

» This can be interpreted as the Euler approximation of an ODE.
 DDIM is a probability flow ODE from a SDE [1].

 We can speed up the generation process by choosing a larger step size.

|:> Faster, but less accurate

[1] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456.

38



DDIM Accelerated Sampling

sac Ty Yy
NN R R R 2 2
o WY\Y | | | L

| | | | | | | | | | | | |
1000 999 998 997 996 995 994 993 992 991 990 998

10 At \ !/‘

« By skipping k steps, we have a step size of kAt. |

« Sampling is k times faster.
« We trade image quality for speed.

50

Total amount of steps
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Various Schedulers...

Elucidating the Design Space of Diffusion-Based
Generative Models

PSEUDO NUMERICAL METHODS FOR DIFFUSION
MODELS ON MANIFOLDS

Luping Liu, Yi R
Zhejiang Universi
{luping.liu,

Denoising
samples st
to thousan
successful
Improved
(e.g., Den
ation _meth

Published as a conference paper at ICLR 2022

PROGRESSIVE DISTILLATION FOR FAST SAMPLING
OF DIFFUSION MODELS

Tim Salimans & Jonathan Ho
Google Research, Brain team
{salimans, jonathanho}@google.com

ABSTRACT

Diffusion models have recently shown great promise for generative modeling, out-
performing GANs on perceptual quality and autoregressive models at density es-
timation. A remaining downside is their slow sampling time: generating high
quality samples takes many hundreds or thousands of model evaluations. Here
we make two contributions to help eliminate this downside: First, we present new
parameterizations of diffusion models that provide increased stability when using
few sampling steps. Second, we present a method to distill a trained deterministic
diffusion sampler, using many steps, into a new diffusion model that takes half as

camanling ctane Wa than Laan snenasaccivaly annluing thic dictillatinn anenna

Choosing a different solver for the
given ODE can improve speed and
image quality.

Other numerical approaches such
as Heun's Method or Runge Kutta
solvers can be explored.

Knowledge distillation techniques
can be used for fast sampling.

Diffusion Models in Medical Imaging, 30.01.2024
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Diffusion Models in the Latent Space

f \‘\ r- Latent Space ) (Conditioning
ﬂ Diffusion Process e:\nﬂanti
I a; |
> é Denoising U-Net €g 2y Text

Repres
entations

o0

- /
@xel Spac9
T”
denoising step crossattention  switch  skip connection concat - J

University of Basel 41
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Agenda

O Introduction to Diffusion Models [~30 min]
Q Physical Intuition & General Concepts
U Denoising Diffusion Probabilistic Models
L A Score-Based View on Diffusion Models

0 Advanced Topics [~30 min]
U Sampling Strategies

QO Inference-time Conditioningl

U Training-time Conditioning

Diffusion

"mouse" —
Model

O Applications in Medical Imaging [~30 min]

co0oooo

Synthesis
Inpainting
Segmentation
Anomaly Detection
Reconstruction
Registration
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Example: Classifier Guidance

We want a class-conditional diffusion model. We consider the gradient with respect to the input pixels.

Input image of class i
Xt

Classifier —— (¢ (j|x)
C

Classifier _, C(x;,t)

Saliency map for class i

Time step t

V..C(i|x)

University of Basel 43
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Classifier Guidance

We use the gradient to guide the generation process towards a desired class.

Classifi . - iffusi
B i) — Val(ilxet) — DIUSon  —— c(@nt) —> update —
ode
l Guidance i
X, Classifier C w >
Diffusion Model J

T

desired class i

V. C(i]x¢)

‘ Gradient guidance is not restricted to classification models. Other models
(e.g., regression, segmentation, ...) work just in the same way.

44

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in neural information processing systems 34 (2021): 8780-8794.



Classifier Guidance

goldfish cheeseburger
arctic fox fountain
butterfly balloon
African elephant tabby cat
flamingo lorikeet
tennis ball agaric

Check out this very nice tutorial: https://sander.ai/2022/05/26/guidance.html

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in neural information processing systems 34 (2021): 8780-8794. ®



Image-to-image translation

We might want to translate an image to another...

Add random noise Denoising process

»
L

X0 XL,
« We add L steps of noise to an input image x,.
 The smaller L, the less the image can be changed.

« The higher L, the more information is destroyed.

|:> We need to find a way to keep the information of x,.

|:> We consider Denoising Diffusion Implicit Models (DDIMSs).

Diffusion Models in Medical Imaging, 30.01.2024 University of Basel 46



DDIM Inversion

« Under the DDIM sampling scheme, we remove the random component.

» The connection to ordinary differential equations (ODEs) can be seen when we
rewrite the denoising step as

» This can be interpreted as the Euler approximation of an ODE.
» Given infinitely small steps t, the reversed ODE can then be solved with

noise encoding

iterative noise encoding

K ~ " jterative noise decoding
> [ ., " “ AL

fort=20,..,T fort=T,..,0

Song, Jiaming, Chenlin Meng, and Stefano Ermon. "Denoising diffusion implicit models." arXiv preprint arXiv:2010.02502 (2020).
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Image Interpolation

DDIM noise encoding

Linear Combination 1
1-a)A+aB J

DDII\/I noise decoding

mw'r@ TRy} % AN §§

« 0.1 0.2 04 05 0.6 0.8 1

v

Diffusion Models in Medical Imaging, 30.01.2024 University of Basel 48



DDIM Inversion & Gradient Guidance

Output

For L steps
\/ N
Input Encoded Image ‘ \ Denoising with DDIM sampling
e R P RE i ) ‘scheme and gradient guidance
\

4
gradient

—)‘ Task-specific network

o

’ desired label }

For L steps

Noise encoding with the
reversed DDIM sampling

Classification Model
Regression Model
Segmentation Model

N Example: age regression

Wolleb, Julia, et al. "The swiss army knife for image-to-image translation: Multi-task diffusion models." arXiv preprint arXiv:2204.02641 (2022).
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Agenda

O Introduction to Diffusion Models [~30 min]
Q Physical Intuition & General Concepts
U Denoising Diffusion Probabilistic Models
L A Score-Based View on Diffusion Models

0 Advanced Topics [~30 min]
U Sampling Strategies
Q Inference-time Conditioning

EITraining-time Conditioning_

"mouse”  — Diffusion
Model

O Applications in Medical Imaging [~30 min]

co0oooo

Synthesis
Inpainting
Segmentation
Anomaly Detection
Reconstruction
Registration
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Scalar Conditioning via Spatial Addition

Res-Block

« We train a class-conditional fime t

diffusion model by including a

Time embedding

class label c.

Res-Block
Block
¢ v

-
/@i
.

« We compute a class embedding,

and pass it to the residual blocks :
by spatial addition. class c

Res

class embedding

NHA

Res-Block

Nichol, Alexander Quinn, and Prafulla Dhariwal. "Improved denoising diffusion probabilistic models." International Conference on Machine Learning. PMLR, 2021. ¥



Scalar Conditioning via Adaptive Group Normalization

class c time t

class embedding| | Time embedding| * Similar to StyleGAN, we add

€e et time and class information
using a group normalization
. = layer.
> =
Q] ©
- N
£ £
ke = * This happens in all residual
Input —>» 5 |—>» h —> Zo —> e:GroupNorm(h) + e,
5 - blocks of the U-Net.
2 3
o Pt
O o
L J
T

First Layer of the Residual Block

Dhariwal, P., & Nichol, A. (2021). Diffusion models beat gans on image synthesis. Advances in neural information processing systems, 34, 8780-8794.
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Classifier-free Guidance

D, Context
- \ 4 l Y
\ 4
A Y
""""""" AN i :
Noisy image— |— — — | > > > [~ (— Noise
Timestep—

Residual Block Conv Layer
Attention Block Linear Layer

D Down/Upsampling Block

€9 (x¢ly) = €9(x¢|0D) + wleg(x¢]y) — €9 (x¢|D)]

Check out this very nice tutorial: https://sander.ai/2022/05/26/guidance.html

Ho, J., & Salimans, T. (2021). Classifier-Free Diffusion Guidance. In NeurlPS 2021 Workshop 5



Image Conditioning through Concatenation

Colorization
» For image generation of a fake image x,
we can use a conditioning image y.
Inpainting
« This requires paired training.
Uncronbin * During training and sampling, we add
PPing information of the conditioning image x
through channel-wise concatenation.

Decompression

Saharia, Chitwan, et al. "Palette: Image-to-image diffusion models." ACM SIGGRAPH 2022 Conference Proceedings. 2022. 54



Image Conditioning through Concatenation

Conditioning image

Output image
-y

U-Net
Diffusion
Model

4 channels

3 channels 3 channels

Diffusion Models in Medical Imaging, 30.01.2024 University of Basel 55



Palette: Image-to-Image Diffusion Models

LS. & 0

Colorization

Saharia, Chitwan, et al. "Palette: Image-to-image diffusion models." ACM SIGGRAPH 2022 Conference Proceedings. 2022.
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Text Conditioning

— Diffusion Model —

"A small cactus wearing a straw

hat and neon sunglasses in the
Sahara desert." téo
, ©
An alien octopus floats Text =
CLIP through a portal reading a encoder -g
Dall-E newspaper. ;
Stable Diffusion 2@

Imagen

Saharia, Chitwan, et al. "Photorealistic text-to-image diffusion models with deep language understanding." Advances in Neural Information Processing
Systems 35 (2022): 36479-36494.



Architecture - Conditioning

* Transformers Cross-Attention

« We use the text embedding to /

generate the key / value pair.

« We use the image embedding for
the query.

CLLT]
O——
— OI1]

I 11]
—- C
OO = .

Attention

scores

Jaegle et al (2022). Perceiver 10: A General Architecture for Structured Inputs & Outputs. In ICL.
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Text Conditioning

e Predicted
r Noisy latent / U-Net (with ) \ lio;Zee
A cat lying on the — | Textencoder @ 1 o L
T —T 8 |
t, t, t, . || 1K S
> A
A A » g 2
i o )
i Tl 3 2
» | it it it = 5 5 it @ = =
= =
> i, int, it | it gt it A A » g A
Z M2
> ity ist, ity - igtos ity Time Step e g'
- Tty | fnats | Taats et ity E
> i it it it o | X 5 it
Prompt embedding
Hertz, Amir, et al. "Prompt-to-prompt image editing with cross attention control." arXiv preprint arXiv:2208.01626 (2022). "

https://deepsense.ai/diffusion-models-in-practice-part-1-the-tools-of-the-trade/



Text Conditioning

LatentSeed

Gaussian noise
~N(0,1)

User prompt
"An image of
strawberry sushi”

repeat N steps

@ IR
23
—» | U-Net with attention —p —_— §£ N
2 o
latent conditioned
latent
f Output image
CLIP Text
—
Encoder
text
embedding

A brain riding a rocketship heading towards the moon.

A dragon fruit wearing karate belt in the snow.

https://deepsense.ai/diffusion-models-in-practice-part-1-the-tools-of-the-trade/
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ControlNet

- Residual Block Conv Layer
ControlNet , .
[: Attention Block Linear Layer
COﬂdIthnlng — _, |:] Down/Upsampling Block
Image

We pretrain a diffusion model with text prompts.

1 We freeze this model.

We fine-tune a copy conditioned on c.

We pass information to the frozen model
through skip connections.

Noisy image — — Noise

a Locked Pre-Trained Model

Zhang, Lvmin, Anyi Rao, and Maneesh Agrawala. "Adding conditional control to text-to-image diffusion models." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023. 61



ControlNet

X

l

(

neural network

block

|

l

y

conditioning image

zero convolution

|

x %;
4 i
neural network | : trainable co
block (locked) i | | 124
: [
i [ zero convolution
¢ i !
e ControlNet

Input (User Scribble)
‘r

Default

Automatic Prompt

“a door on a wall”

“an elephant with background in the field”

User Prompt

“Egyptian elephant sculpture”™
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DreamBooth

Fine-Tunin Inference
Input g Output
Images (~3-5) + Unique
subject’s class name identifier
() | B ( ) ” ol ~
el 6,12 okt
. = "v] the beach”
” ”
+ dog
- y,
é )
A V] dog
walking on o
\_ Y, colorfud, carpet”
Pretraind Personalized
Text-to-Image Text-to-Image
model model

Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., & Aberman, K. (2023). Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. CVPR



Agenda

O Introduction to Diffusion Models [~30 min]
Q Physical Intuition & General Concepts
U Denoising Diffusion Probabilistic Models
L A Score-Based View on Diffusion Models

0 Advanced Topics [~30 min]
0 Sampling Strategies
U Inference-time Conditioning
QU Training-time Conditioning

O Applications in Medical Imaging [~30 min]

pooooo

Synthesis
Inpainting
Segmentation
Anomaly Detection
Reconstruction
Registration

Diffusion Models in Medical Imaging, 30.01.2024

University of Basel
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Image Synthesis

Examples from the Community

Real Synthetic

Diffusion Models in Medical Imaging, 30.01.2024 University of Basel 65



Why? Medical Images are Rare!

Privacy concerns
Costly image acquisition

Data Provider

Limited data

Data Users

Diffusion

Models in Medical Imaging, 30.01.2024

University of Basel
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Use of Synthetic Data

What can we use generated images for?

» Full private training
« Data augmentation
» Testing edge cases

Evaluation Criteria:

* Realism
* Diversity
* Privacy

Pinaya, Walter HL, et al. "Generative Al for Medical Imaging: extending the MONAI Framework." arXiv preprint arXiv:2307.15208 (2023).
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Generating High-Resolution 3D Brain Data

Latent Space

Diffusion process >

T # 2T—1 2T

Latent Diffusion Model trained on data from UK Biobank (N = 31,740)
« Allows for the generation of T1-weighted brain MR images with a
resolution of 160 x 224 x 160

Can be conditioned on covariates like:
« Age

« Gender

* Ventricular and Brain volumes

Pinaya, W. H., et al. (2022) Brain image generation with latent diffusion models. In MICCAI Workshop on Deep Generative Models



High-Resolution 3D Medical Image Generation with LDMs

DUKE MRNet ADNI
(256 x 256 x 32) (256 x 256 x 32) (64 x 64 x 64)

-
#
Ry

<. .
ol

o
_~"p' b -\'\."' ’
v

»
2o 8
¢

d

LIDC-IDRI
(128 x 128 x 128)

Khader, F., et al. (2023) Denoising diffusion probabilistic models for 3D medical image generation. In Scientific Reports
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Fine-Tuning Stable Diffusion

N

.. \ .

Random Conditional VAE Output: Synthetic
Gaussian Denoising Decoder : CXR Images el Chusione "No pleural effusion” PTeorel creusions
Noise = - 7
U-Net |
I
I
I
I
I
1
I
I
Input: Prompts I
I
4 N I
“Moderate bilateral I
pleural effusions and

mild pulmonary edema.” !
. J I
I
“1. No acute I
cardiopulmonary process. |
2. Stable torturous I
dilated thoracic aorta.” Text Encoder RoentGen !

/] 4

_________________________ - "Big right-sided "Bilateral "Big left-sided

pleural effusion” pleural effusions” pleural effusion”

Fine Tuned Stable Diffusion pipeline for text-conditioned chest X-Ray generation

« U-Net and Text Encoder are jointly fine-tuned on the MIMIC-CXR dataset

Chambon, Pierre, et al. (2022) RoentGen: vision-language foundation model for chest x-ray generation. arXiv:2211.12737 n



Generation of Anonymous Chest Radiographs

.. (2) (4)
Original Patient Top-1 Classifier
training set retrieval training scan training
A A
1) :
Generative Anonymous
modeling training set
A
\ Y
3 . } Infiltration
Synthetic =( ) Bt ittt ;dlfferent. keep
chest X-ray verification same: exclude

Privacy enhanced sampling strategy for conditional chest X-
Ray generation

« Generated images are not per se private, as generative
models may memorize training examples

* 1) Generate Image 2) Find most similar one from training Mass
data 3) Verify if patient is the same — include/exclude

Nodule

Cardiomegaly

Packhauser et al (2022). Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification Systems. arXiv:2211.01323
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Synthetic Data Augmentation

N <---- S
Largescale Unlabeled Datasets, Encoder Pre-training Process  Fine-tuning Process  Shared Process
R .# %‘ ¥ . Selective Augmentation Process Skip Connection
N . @, BN
So / =
b ‘ i zT
Small-scale & Latent 20 Denoising U-Net €9
Labeled Dataset w (T —1)
. @ ]
— = = Decoder 1
Fe= ) Rl
_t_z, ,‘ ‘f ? vee 5 2 — - — J
e z e |00 ! E ‘Target Class
: — Label y
Predicted «___ ---_;,‘:"’*l Latent Classifier
Class Label y >
Auxiliary Centroid
Classifier —

Data
Sample

Synthetic Images
Extractor  Centroid Feature (After Selection)
Distance Selection

1) Pre-training an unconditional Latent Diffusion Model on a large unlabeled dataset
2) Conditional fine-tuning on an unseen labeled (small) dataset through a latent classifier

3) Selection of the highly-confident synthetic samples based on feature similarity with real data

Ye, J., et al. (2023) Synthetic Augmentation with Large-scale Unconditional Pre-training. In MICCAI 2023



Synthetic Image Augmentation — Performance Gain

Diffusion-based Augmentation Text-to-lmage Generation
Inpainting DreamBooth

' “ ..‘
PO ot o~ s
B ol f
R
R'&' - _

Skin condition examples

v

New token + Text
embedding prompt

« Diffusion models can scalably generate images of skin disease and training models with that augmented data
improves performance in data-limited settings

« Performance gains (in this setting) saturate at a synthetic-to-real ratio of 10:1 and is substantially smaller
than the gains obtained by adding real images — collection of diverse real data remains more important

Sagers, L. W., et al. (2023) Augmenting medical image classifiers with synthetic data from latent diffusion models. arXiv:2308.12453
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Synthetic Data for Distribution Shifts — Improving Fairness in Al

P Target joint

[N 1 i distribution of

I— | ~ labels and g T I ~

== ~—— properties — S ~——
Unlabelled data Labelled data Synthetic data Synthetic data Labelled data
1. Train Diffusion Model using 2. Sample synthetic images to 3. Train downstream classifier
labelled, weakly labelled and/or create a synthetic dataset from labeled and synthetic data

unlabelled data

« Learning realistic augmentations from data is possible in a label-efficient manner using diffusion models

« Unlabeled data can be used to capture the data distribution of different conditions and subgroups — steer the
distribution of synthetic examples according to specific requirements

« Learned augmentations can surpass heuristic, manually implemented ones by making models more robust
and statistically fair in- and out- of-distribution

Ktena, I., et al. (2023) Generative models improve fairness of medical classifiers under distribution shifts. arXiv:2304.09218.



Synthesising Rare Samples — Testing Edge Cases

Diffusion Process

0 t 0O
o o
C >
- o
3 PI;ase =
g (p) g.
L,E_, Toolset 3
Y(s)

Tt—1 Denoising Cond. UNet Lt

Po(Y(p)s Y(s)) Sampling Jes)
» Toolset

L T >
¢ .-?I !0 am - -- :0 -- ’ i’ChSSiﬁer

« Diffusion model is used to synthesize rare cases in instrument classification in cataract surgery

« Performance gain of > 10% for rare cases

Frisch, Y., et al. (2023) Synthesising Rare Cataract Surgery Samples with Guided Diffusion Models. MICCAI 2023
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Inpainting

Examples from the Community

Diffusion Models in Medical Imaging, 30.01.2024 University of Basel 76



Point Cloud Diffusion Models for Automatic Implant Generation

8
3
&
()
x
S
Point Clo‘,'d Generation: Point Cloud Voxelization
----------- Marching Cubes & Network
Poisson Disk Sampling
8
3
&
s
S
8 Point Cloud Diffusion
kS Model for Shape
I Reconstruction

« Implant generation as shape completion task (basically 3D inpainting)

« Applying the diffusion model to high-resolution volumes (512 x 512 x 512) is impossible due to limited GPU
memory

« Diffusion models can be applied to a wide variety of different data types (like point clouds)

Friedrich, P., et al. (2023) "Point Cloud Diffusion Models for Automatic Implant Generation." MICCAI 2023.
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Point Cloud Completion with Diffusion Models

po (X;—11%¢, €o)

q(X¢1Xe_1)

Friedrich, P., et al. (2023) "Point Cloud Diffusion Models for Automatic Implant Generation." MICCAI 2023.
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Image Segmentation

Examples from the Community

. N\
( E Condition Encoder @ Attentive Mechanism |
E () Segmentation Encoder @ Addition |
; : Segmentation Decoder !
| | — i
' !
I é ]
I Z |
: |
' i !
' |
[ D l I H 1
: !
. |
[ !
Ex ]

Diffusion Models in Medical Imaging, 30.01.2024 University of Basel 79



Diffusion Models for Segmentation Mask Generation

b
—> P Difusion — (X, t)
X, v

Equation (»)

!

Ly T Lyt Lp0

1 l -« :
(*) LTht—1 :\/77 (.I,'bj _\/l?att€0<Xt) t)) + OtZ, with z ~ N(O, I)

The anatomical information is added by concatenating the input images b to the noisy segmentation mask x,, , in
every step t.

80

Wolleb et al (2022). Diffusion Models for Implicit Image Segmentation Ensembles, MIDL 2022. arXiv:2112.03145



Generation of Segmentation Ensembles

~ N(0,I)

Mean map

Noise 1

4 )

Ground Truth

Sampling Process of
the Diffusion Model

X J

Noise 2
Segmentation 2 Segmentation 1

I &
Variance map

Noise n
Segmentation n

-

Corresponding brain MR image b

Wolleb et al (2022). Diffusion Models for Implicit Image Segmentation Ensembles, MIDL 2022. arXiv:2112.03145 o



3D Segmentation with PatchDDM

1 x 1283

concat
v
\
\
\
\
\
7\
/
/
/

~-

8 x 2563

 We add a position encoding in all 3 spatial dimensions.
« Training is on patches only, and saves memory and training time.
» Inference runs over the whole 3D volume.

1 x 2563

Training

Inference

Bieder et al. (2023) Memory-Efficient 3D Denoising Diffusion Models for Medical Image Processing. MIDL
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Ambiguous Segmentation

« Ambiguity Modelling
Network (AMN) models the
distribution of ground truth
masks given an input
image.

« Ambiguity Controlling
Network (ACN) models the
noisy output from the
diffusion model conditioning
on an input image.

I
Training . Inference
: ]
I f/
I
: .
¥ I
Yoy M)X —_— x ) : , l '
\ 'bT byt bt-1 XA , v
‘ ' — | ‘ a8 Xor )\ Xoy Xy Xb0
o B (Xp, Xy 0.1) 30 ! Po(Xp, 1.1 X, o DI
I g
I :
|
. I o
r KL Divergence «l' i »
Hq Hp : )
E— 2 ®
)
I
I :
I
:
: Reverse Diffusion
b - Input image X, , - Segmentation mask with added noise X, - Segmentation masks of b X, , - Output from single time step
AMN - Ambiguity Modeling Network ACN - Ambiguity Controlling Network

Rahman, Aimon, et al. (2023) Ambiguous medical image segmentation using diffusion models. CVPR
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Segmentation with Diffusion Pre-training

/ Diffusion \ Pre-training

(z¢|zo Pa(®: 1|7)
zy € X q— ------- @ ---------------------------------------------------------------------------------------------------------------------
€~ -/\/0,1
t~Uyr

Volleo(x:,t) — €l®

€0

4 Few label ) Finetuning

X10X2=0 \L 4

(.’l), y) = XZ XY -~
7= eg(x) I g
VoLoss(i),y) - ’

J

N\

Rousseau et al. (2023) Pre-Training with Diffusion models for Dental Radiography segmentation. MICCAI 2023 8



Anomaly Detection

Examples from the Community

Original Reconstruction Heatmap

Diffusion Models in Medical Imaging, 30.01.2024 University of Basel 85



Unsupervised Anomaly Segmentation

Latent Diffusion Model (LDM) learns the distribution of healthy brain data
Compression (VQ-VAE) scales for high-resolution images

Latent Space

— Diffusion process

Y

Denoising U-Net €9

T

<T

LDM identify regions with
a low likelihood of being
part of the healthy dataset

Reverse/denoising
process is used to inpaint
these regions and “heal”
the possible anomalies

Pinaya et al (2022). Fast Unsupervised Brain Anomaly Detection and Segmentation with Diffusion Models. DOI:10.1007/978-3-031-16452-1_67




Anomaly Detection with Simplex Noise

simplex noise scale controls target anomaly size

Zo T\ Zo Esq Eseg GT

« Typical Gaussian noise is found to be
insuffient for anomaly detection.

» Therefore, we explore the use of simplex
noise for the corruption and sample
generation of medical images.

[\

L

Al DO

e

%‘C‘; | “i

P

-
*
|
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1"
' [
A5
. [ 5
a1
¢ -
a5

s

(a) Structures of simplex noise
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Wyatt et al (2022) AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic Models using Simplex Noise. CVPR workshop



Anomaly Detection with Coarse Noise

Corruption Noise generation

process C upsample
&
mask

Gaussian Simplex Coarse

Normal image

diffuxion models imp

moiye magmide

Denoising
model

ut I'raining time

additional parameter
"t", covrespowding fo

Reconstruction Residuals

Reconstruction

procedure

Reconstruction

post-process
residuals

—

I'est time

A(x")

Anomaly scores Ground truth

Kascenas et al (2023) The role of noise in denoising models for anomaly detection in medical images. Medical Image Analysis
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Anomaly Detection from Patches

Training

pDDPM

3
&~ (i)~

£

Evaluation 2 pDDPM

o () R () B

> () R ()

o () A i) |

<

2, BN

R LS

d )

— (o) |

Behrendt, Finn, et al. (2023) "Patched diffusion models for unsupervised anomaly detection in brain mri." Medical Imaging with Deep Learning



Mask, Stitch, and Re-Sample

Mask Stitch  Re-Sample

Masked Input

noise —

Input Anomaly Map

“« de-n'“o‘i‘se "
Abnormal

Normal

Automatic Mask Masked PH Reconstruction
PH Reconstruction

Bercea, C et al. (2023). Mask, Stitch, and Re-Sample: Enhancing Robustness and Generalizability in Anomaly Detection through Automatic Diffusion Models. arXiv preprint arXiv:2305.19643.
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Weakly Supervised Lesion Detection

Goal: Pixel-wise anomaly detection using image-level labels only




Weakly Supervised Lesion Detection

Unpaired image-to-image translation

Set of patients Set of images of a
affected by a — — healthy control
specific disease group

P am

image of a patient healthy reconstruction difference

| - 1
Z
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Weakly Supervised Lesion Detection

For L steps

Noise encoding with
reversed DDIM sampling

/

Encoded noisy image

For L steps

Denoising with DDIM
sampling and classifier
guidance

\

Anomaly Map

/

DDIM

Set of images
of a healthy
control group

\ N/

Gradient Guidance

Set of patients
affected by a
specific disease

Classification Model
(healthy or diseased?)

Wolleb et al (2022). Diffusion Models for Medical Anomaly Detection, MICCAI 2022. arXiv:2203.04306
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Lesion Localization with Classifier-free Guidance

DDIM Encoding - Empty condition

DDIM Decoding - Target class

g
)

) 0L 4

Original
Image

Latent Space

&
) (-0 4

Healthy
Counterfactual

Heatmap

Sanchez et al (2022). What is Healthy? Generative Counterfactual Diffusion for Lesion Localization. DGM4MICCAI 2022. arXiv:2207.12268
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Image Reconstruction

Examples from the Community

0 q“_-é-:‘m .q

X Sinogram  diag(A) kspace diag(A)




Score-based Diffusion Models for Accelerated MRI

Reverse SDE

Jojoipald
|
Aoualsisuod

10}924409)

!
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X

Chung et al. (2021) Score-based diffusion models for accelerated MRI. MIA 2021
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Undersampled MR Reconstruction via Diffusion Model Sampling

Unconditional Denoising

Yt

Yr—

\ p
J
&
>
\
|
|

Fe-1)

Yo \ B
Pe (.Vfull)

Xobs Add F(WV (0,1 —@y))

Pe (qull lxobs)w

B j Yt-1
Xohe Conditional Denoising k-Space Guidance (KSG)
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Peng, C., Guo, P., Zhou, S. K., Patel, V. M., & Chellappa, R. (2022). Towards performant and reliable undersampled MR reconstruction via diffusion model sampling. MICCAI 2022



K-space Cold Diffusion

diffusion process / image degradation

reverse process / image restoration

under-sampled k-space

under-sampling mask

- .
A

x¢ = D(xq,t) = F~1(M,k)

>

<

M,

Shen, G., Li, M., Farris, C. W., Anderson, S., & Zhang, X. (2023). K-space Cold Diffusion: Learning to Reconstruct Accelerated MRI without Noise. arXiv preprint arXiv:2311.10162.

University of Basel
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Source

Image-to-Image Translation

Examples from the Community

MRI Contrast Translation

Reference SynDiff cGAN UNIT MUNIT AttGAN SAGAN

DDPM

Diffusion Models in Medical Imaging, 30.01.2024
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Diffusion Models for Contrast Harmonization

Bad comparibility

—

1.5T
for all slices b, of B with shape
i € {1, ..., n} and shape [hw] [n, h, w]
Scan B of S l Diffusion Model S¢an Byansgormed

in contrast of T

|

~ N (O’ I) b,
R stack all

B
o 1. ) &y .
! ’ —_——— —— slices x,_, for

Xb:, T Xbi 1 Xpi t-1 Xbi, 0 i €{l, ..., n}

Durrer, Alicia, et al. "Diffusion Models for Contrast Harmonization of Magnetic Resonance Images."

arXiv preprint arXiv:2303.08189 (2023).
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Contrast Harmonization Results

Input Ground Truth Diffusion Model Output

3TtolST

ISTto3T

Durrer, Alicia, et al. "Diffusion Models for Contrast Harmonization of Magnetic Resonance Images." arXiv preprint arXiv:2303.08189 (2023).
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3D Shapes from 2D Microscopy

Noising step
(adding Gaussian noise):

Decreasing noise level

....................................................... (S

Jnereasingnoiselevel . Ao o)
S L - ——
AW > Denoising s
step:
bT Po(Xbt-1|Xbt,0)  Xbt-1

Xb, T Xb,t

Waibel, D. J., Réell, E., Rieck, B., Giryes, R., & Marr, C. (2023, April). A diffusion model predicts 3d shapes from 2d microscopy images.

Class

SDE-class

2D input 3D groundtruth 3D predictions

D

Echinocytes

Cell cluster

Multilobate

Keratocyte

Knizocyte

Acanthocyte

In 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) (pp. 1-5). IEEE.
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3D with 2D model

Slice-wise Model
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Volume-wise Model

Denoising Autoencoder
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Zhu, Lingting, et al. (2023) Make-A-Volume: Leveraging Latent Diffusion Models for Cross-Modality 3D Brain MRI Synthesis. MICCAI




Image Registration

Examples from the Community

Diffusion Models in Medical Imaging, 30.01.2024 University of Basel 104



DiffuseMorph

c

‘© Diffusion Deformation !

|: network network STL —

Gg My
Xt
Vaf+{1—-ac€
Condition Continuous image registration Continuous image generation
wid
s oMy’
[t
m el els m(po3) m(dbo7) X7 m = Xo

Kim et al (2022). DiffuseMorph: Unsupervised Deformable Image Registration Along Continuous Trajectory Using Diffusion Models. ECCV 2022



Thank you!

Center for medical Image Analysis & Navigation (CIAN), Prof. Philippe C. Cattin
Universitat Basel

University of Basel 106



Useful Key References, Gits to Watch, etc.

Surveys
* https://arxiv.org/abs/2209.02646
* https://arxiv.org/abs/2209.00796

Github
« https://github.com/heejkoo/Awesome-Diffusion-Models

Tutorials

* https://cvpr2022-tutorial-diffusion-models.github.io
« https://huggingface.co/blog/annotated-diffusion

« https://huggingface.co/docs/diffusers




