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A Quick Recap on Generative Modelling

…

Data samples
(e.g. Stanford Dogs)
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A Quick Recap on Generative Modelling

Data distribution 
(unknown)

Model distribution

Datapoints are i.i.d. samples 
of this underlying data distribution

We can define a parameterized distribution
that we tune to be close to the data distribution

≈
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A Quick Recap on Generative Modelling

Model distribution
= Generative Model

Sampling

Novel data points

Probability evaluation

High 
probability

Low 
probability
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The Landscape of Deep Generative Models

Variational Autoencoders

Normalizing Flows

Energy-based Models

Restricted Boltzmann MachinesAutoregressive Models

Generative Adversarial Networks

Denoising Diffusion Models
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Agenda

q Introduction to Diffusion Models [~30 min]
qPhysical Intuition & General Concepts
qDenoising Diffusion Probabilistic Models
qA Score-Based View on Diffusion Models

q Advanced Topics [~30 min]
qSampling Strategies
q Inference-time Conditioning
qTraining-time Conditioning

q Applications in Medical Imaging [~30 min]
q Synthesis
q Inpainting
q Segmentation
q Anomaly Detection
q Reconstruction
q Registration
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Diffusion Models in Medical Imaging, 30.01.2024



The Physical Intuition behind Diffusion Models
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PMLR (2015)
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The Physical Intuition behind Diffusion Models (Macroscopic)

The dye density represents our probability density.

Goal: We want to learn this probability density

Observing this diffusion process: 

• Original data distribution is perturbed over time

• Data distribution → Uniform distribution (mapping to a simple distribution)

Diffusion Models in Medical Imaging, 30.01.2024
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The Physical Intuition behind Diffusion Models (Macroscopic)

The dye density represents our probability density.

Goal: We want to learn this probability density

Observing this diffusion process: 

• Original data distribution is perturbed over time

• Data distribution → Uniform distribution (mapping to a simple distribution)

Can we learn to revert this process (run it backwards)?

• Uniform distribution → Data distribution

• Yes, but we first need a way to model the system.

Diffusion Models in Medical Imaging, 30.01.2024
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The Physical Intuition Behind Diffusion Models (Microscopic)

We can try to model the diffusion process by modelling the
Brownian motion of single particles.

• We can observe that the position updates follow small Gaussians

• This holds true for the forward as well as the reverse process
(for small enough ∆𝑡)

• We can define a known diffusion process with a chain of Gaussian 
position updates

• We  try to learn the reverse process by estimating the mean and the 
covariance of the backward steps

→ Same mechanism is used in the Diffusion Models we will see today!

Diffusion Models in Medical Imaging, 30.01.2024



Denoising Diffusion Probabilistic Models
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NeurIPS (2020) ICML (2021) NeurIPS (2021)
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How do Diffusion Models work?

Diffusion Models consist of two main components:

• A fixed forward diffusion process that gradually adds noise to the image
• A learned reverse diffusion process that gradually removes noise from the image

Forward process

Reverse process

Data Noise

Diffusion Models in Medical Imaging, 30.01.2024
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The Forward Diffusion Process

Data Noise

𝑞 𝑥! 𝑥!"# = 𝑁( 1 − 𝛽!	𝑥!"#, 𝛽!𝑰)

𝑞 𝑥#:% 𝑥& =0
!'#

%

𝑞 𝑥! 𝑥!"#We model the forward process as a Markov chain:

with each transition being a parameterized Gaussian:

Diffusion Models in Medical Imaging, 30.01.2024
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The Forward Diffusion Process

Data Noise

𝑞 𝑥! 𝑥!"# = 𝑁( 1 − 𝛽!	𝑥!"#, 𝛽!𝑰)

We define a variance schedule for 𝛽!	

We usually choose 𝑇 ≈ 1000 (this remains a design choice)

𝑞 𝑥% 𝑥& ≈ 𝑁(0, 𝑰)

Diffusion Models in Medical Imaging, 30.01.2024
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The Forward Diffusion Process

We defined a forward process that transforms our data distribution to noise.

Diffusion Models in Medical Imaging, 30.01.2024
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The Reverse Diffusion Process

We could generate new samples by:

• Sampling 𝑥%:

𝑥%~𝑁(0, 𝑰)

• Iteratively sample 𝑥!"# for 𝑇 timesteps:

𝑥!"#~𝑞 𝑥!"# 𝑥!

Recall, the diffusion process is designed in a way that:

𝑞 𝑥! ≈ 𝑁(0, 𝑰)

True denoising distribution This distribution is unknown. Can we estimate it?

Diffusion Models in Medical Imaging, 30.01.2024
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The Reverse Diffusion Process

YES! We can approximate the true denoising distribution (as a normal distribution) for small steps.

Diffusion Models in Medical Imaging, 30.01.2024
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The Reverse Diffusion Process

Data Noise

We approximate the true denoising distribution 𝑞 𝑥!"# 𝑥! as being normal distributed:

𝑝( 𝑥!"# 𝑥! = 𝑁(𝜇( 𝑥! , 𝑡 , 𝜎!)𝑰)

Mean is estimated by a neural network

Diffusion Models in Medical Imaging, 30.01.2024
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How can we train such a model?

Ho et al. (2020) found that we can parameterize 𝜇( 𝑥! , 𝑡 as follows:

𝜇( 𝑥! , 𝑡 =
1
𝛼!

𝑥! −
𝛽!
1 − 8𝛼!

𝜖((𝑥! , 𝑡)

with 𝛼! ≔ 1 − 𝛽! and 8𝛼! ≔	∏*'#
! 𝛼*.

Keep in mind: 𝑝" 𝑥#$% 𝑥# = 𝑁(𝜇" 𝑥#, 𝑡 , 𝜎#&𝑰)

the noise to be removed  

Diffusion Models in Medical Imaging, 30.01.2024
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𝑥& 𝑥!

𝜖

𝜖(

MSE

𝑡

Diffusion Models in Medical Imaging, 30.01.2024

How can we train such a model?
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Implementation Details

Keep in mind: We want to predict the noise to be removed from a corrupted image.

𝜖((𝑥! , 𝑡) is usually implemented as a U-Net:
BUT, we could also use:

• Transformers

• VQ-VAEs

• …

This remains a design choice.

Diffusion Models in Medical Imaging, 30.01.2024
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Generating Samples

Diffusion Models in Medical Imaging, 30.01.2024
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Sample Quality

Diffusion Models in Medical Imaging, 30.01.2024

Samples from model trained on ImageNet (512 x 512)
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Pros & Cons

Diffusion Models in Medical Imaging, 30.01.2024

Samples from model trained on 
CelebA-HQ (256 x 256)

Pros:
+ High sample quality & diversity

+ Build on a strong theoretical foundation

+ Easy and stable to train (just a simple MSE Loss + just one network)

Cons:
- Very slow (sampling usually requires multiple model evaluations) 

→ we will see some strategies to speed this process up
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Playing Around with Diffusion Models

Diffusion Models in Medical Imaging, 30.01.2024



A Score-Based View on Diffusion Models
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NeurIPS (2019)
ICLR (2021) NeurIPS (2021)
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What do we mean when talking about a score function?

𝑝(𝒙)

Probability density function

∇𝒙 log 𝑝(𝒙)
Score function

Take derivative Solve integral

Probability density function (color coded)
Score function (vector field)

Score function represents 
the probability distribution

Diffusion Models in Medical Imaging, 30.01.2024

The score function preserves all 
information of the density function, but is 

much easier to handle → why?
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Score functions bypass the normalizing constant

𝑒,! 𝒙

𝑍(
=	𝑝((𝒙)

Probability density function Score function

∇𝒙 log 𝑝( 𝒙 = 	∇𝒙𝑓( 𝒙 − ∇𝒙 log 𝑍( 	

	 = 	∇𝒙𝑓( 𝒙 − 0

Score function doesn’t rely on normalizing constant.We always need to ensure normalization.
Diffusion Models in Medical Imaging, 30.01.2024
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Can we estimate such a score function from data?

We know it’s possible to train a properly normalized statistical model to estimate the data density function 
using maximum likelihood → can we do something similar to estimate a score function/model?

Given (Data):                     𝒙#, 𝒙), … , 𝒙- 	~	𝑝./!/(𝒙)

Goal (Score function): 𝛻𝒙 log 𝑝./!/(𝒙)

Score model:       𝑠( 𝒙 :	ℝ. → ℝ. ≈ 𝛻𝒙 log 𝑝./!/(𝒙)

Objective:            𝔼0"#$#(2)[ ∇2 log 𝑝./!/ 𝑥 − 𝑠((𝑥) )
)] (Fisher divergence to compare the vector fields)

𝑠( 𝒙 	𝛻𝒙 log 𝑝./!/(𝒙)

We can’t compute this as we don’t know 𝑝./!/(𝑥)

?

Diffusion Models in Medical Imaging, 30.01.2024
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Score matching

There exists a so-called score matching objective, that is similar to the Fisher divergence (up to a constant):

𝔼0"#$#(&)
1
2
𝑠((𝑥) )

) + 𝑡𝑟𝑎𝑐𝑒(∇2𝑠((𝑥))

As a constant doesn’t matter for optimization, this score matching objective defines the same optimum as the
Fisher divergence and can effectively be estimated by the empirical mean over the training data set:

≈
1
𝑁R

4'#

-
1
2 𝑠((𝑥4) )

) + 𝑡𝑟𝑎𝑐𝑒(∇2𝑠((𝑥4))

https://andrewcharlesjones.github.io/journal/21-score-matching.html

doesn’t rely on the 
ground truth score

Diffusion Models in Medical Imaging, 30.01.2024
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Modelling the Diffusion Process with SDEs

Drift coefficient Diffusion coefficient

Diffusion Models in Medical Imaging, 30.01.2024
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Modelling the Diffusion Process with SDEs

If we can model this score function, we can solve the 
reverse SDE using Euler, Milstein or Runge-Kutta method.

https://yang-song.net/blog/2021/score/ (More information on this very nice blog post)

Diffusion Models in Medical Imaging, 30.01.2024

https://yang-song.net/blog/2021/score/
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Agenda

q Introduction to Diffusion Models [~30 min]
qPhysical Intuition & General Concepts
qDenoising Diffusion Probabilistic Models
qA Score-Based View on Diffusion Models

q Advanced Topics [~30 min]
qSampling Strategies
q Inference-time Conditioning
qTraining-time Conditioning

Diffusion Models in Medical Imaging, 30.01.2024

q Applications in Medical Imaging [~30 min]
q Synthesis
q Inpainting
q Segmentation
q Anomaly Detection
q Reconstruction
q Registration



Fake Image Generation

𝑥%"#

𝑥&

…

𝑥%~𝑁 0, 𝐈

𝑥%")

synthetic image

U-Net

Random component

University of BaselDiffusion Models in Medical Imaging, 30.01.2024 35



Schedulers: How to Accelerate Sampling?

"Denoising diffusion probabilistic 
models (DDPMs) have achieved high 
quality image generation, yet they 
require simulating a Markov chain for 
many steps in order to produce a 
sample."

We need to make the 
generation process faster.

University of Basel 36Diffusion Models in Medical Imaging, 30.01.2024



From DDPMs to DDIMs

DDPM sampling scheme

DDIM sampling scheme

The training process stays the same.

We remove the random component

Song, J., Meng, C., & Ermon, S. (2020). Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502. University of Basel 37



• The connection to ordinary differential equations (ODEs) can be seen when we rewrite the 
DDIM denoising step as

• This can be interpreted as the Euler approximation of an ODE.

• DDIM is a probability flow ODE from a SDE [1].

• We can speed up the generation process by choosing a larger step size.

Faster, but less accurate

prediction previous 
value

step size derivative

An Excursion into ODEs

[1] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456. 38



DDIM Accelerated Sampling

• By skipping 𝑘 steps, we have a step size of 𝑘Δ𝑡.
• Sampling is	𝑘	times faster.
• We trade image quality for speed.

Total amount of steps
University of Basel 39Diffusion Models in Medical Imaging, 30.01.2024



Various Schedulers...

• Choosing a different solver for the 
given ODE can improve speed and 
image quality.

• Other numerical approaches such 
as Heun's Method or Runge Kutta
solvers can be explored.

• Knowledge distillation techniques 
can be used for fast sampling.

University of Basel 40Diffusion Models in Medical Imaging, 30.01.2024



Rombach, Robin, et al. "High-resolution image synthesis with latent diffusion models." CVPR 2022

Diffusion Models in the Latent Space

University of Basel 41
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Agenda

q Introduction to Diffusion Models [~30 min]
qPhysical Intuition & General Concepts
qDenoising Diffusion Probabilistic Models
qA Score-Based View on Diffusion Models

q Advanced Topics [~30 min]
qSampling Strategies
q Inference-time Conditioning
qTraining-time Conditioning

Diffusion Models in Medical Imaging, 30.01.2024

q Applications in Medical Imaging [~30 min]
q Synthesis
q Inpainting
q Segmentation
q Anomaly Detection
q Reconstruction
q Registration

"mouse" Diffusion 
Model



Example: Classifier Guidance

𝐶 𝑖|𝑥Classifier
𝐶 

∇2𝐶 𝑖|𝑥

𝑥

Input image of class 𝑖

Saliency map for class 𝑖

𝐶 𝑥! , 𝑡Classifier
𝐶 

Time step 𝑡

Classifier
𝐶 

𝑥!

https://corochann.com/library-release-visualize-saliency-map-of-deep-neural-network-644/

We want a class-conditional diffusion model. We consider the gradient with respect to the input pixels.

University of Basel 43



Classifier Guidance

We use the gradient to guide the generation process towards a desired class.

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in neural information processing systems 34 (2021): 8780-8794.

Diffusion 
Model

update
∗ 𝑠

desired class 𝑖

Gradient guidance is not restricted to classification models. Other models 
(e.g., regression, segmentation, …) work just in the same way.

44



Classifier Guidance

goldfish

arctic fox

butterfly

African elephant

flamingo

tennis ball

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in neural information processing systems 34 (2021): 8780-8794.

cheeseburger

fountain

balloon

tabby cat

lorikeet

agaric

45

Check out this very nice tutorial: https://sander.ai/2022/05/26/guidance.html



Image-to-image translation

We need to find a way to keep the information of 𝑥0.

We consider Denoising Diffusion Implicit Models (DDIMs).

• We add 𝐿 steps of noise to an input image 𝑥0.

• The smaller 𝐿, the less the image can be changed.

• The higher 𝐿, the more information is destroyed.

We might want to translate an image to another…

University of Basel 46Diffusion Models in Medical Imaging, 30.01.2024



DDIM Inversion

• Under the DDIM sampling scheme, we remove the random component. 
• The connection to ordinary differential equations (ODEs) can be seen when we 

rewrite the denoising step as

• This can be interpreted as the Euler approximation of an ODE. 
• Given infinitely small steps t, the reversed ODE can then be solved with

noise encoding

noise decoding

Song, Jiaming, Chenlin Meng, and Stefano Ermon. "Denoising diffusion implicit models." arXiv preprint arXiv:2010.02502 (2020). 47



Image Interpolation

DDIM noise encoding

Linear Combination
(1 − 𝛼)𝐴 + 𝛼𝐵

DDIM noise decoding

0 1𝛼

A B

Output

0.1 0.2 0.6 0.80.4 0.5

University of Basel 48Diffusion Models in Medical Imaging, 30.01.2024



DDIM Inversion & Gradient Guidance

Example: age regression

Wolleb, Julia, et al. "The swiss army knife for image-to-image translation: Multi-task diffusion models." arXiv preprint arXiv:2204.02641 (2022). 49
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Agenda

q Introduction to Diffusion Models [~30 min]
qPhysical Intuition & General Concepts
qDenoising Diffusion Probabilistic Models
qA Score-Based View on Diffusion Models

q Advanced Topics [~30 min]
qSampling Strategies
q Inference-time Conditioning
qTraining-time Conditioning

Diffusion Models in Medical Imaging, 30.01.2024

"mouse" Diffusion 
Model

q Applications in Medical Imaging [~30 min]
q Synthesis
q Inpainting
q Segmentation
q Anomaly Detection
q Reconstruction
q Registration



Scalar Conditioning via Spatial Addition

• We train a class-conditional 
diffusion model by including a 
class label 𝑐.

• We compute a class embedding, 
and pass it to the residual blocks 
by spatial addition.

Nichol, Alexander Quinn, and Prafulla Dhariwal. "Improved denoising diffusion probabilistic models." International Conference on Machine Learning. PMLR, 2021.
51



• Similar to StyleGAN, we add 
time and class information 
using a group normalization 
layer.

• This happens in all residual 
blocks of the U-Net.

Dhariwal, P., & Nichol, A. (2021). Diffusion models beat gans on image synthesis. Advances in neural information processing systems, 34, 8780-8794.

Scalar Conditioning via Adaptive Group Normalization

52



Classifier-free Guidance

∅,

Ho, J., & Salimans, T. (2021). Classifier-Free Diffusion Guidance. In NeurIPS 2021 Workshop 53

Check out this very nice tutorial: https://sander.ai/2022/05/26/guidance.html



Image Conditioning through Concatenation

Saharia, Chitwan, et al. "Palette: Image-to-image diffusion models." ACM SIGGRAPH 2022 Conference Proceedings. 2022.

• For image generation of a fake image 𝑥, 
we can use a conditioning image 𝑦.

• This requires paired training.

• During training and sampling, we add 
information of the conditioning image 𝑥
through channel-wise concatenation.

𝑥𝑦

Colorization

Decompression

Uncropping

Inpainting

54



Image Conditioning through Concatenation

1 channel

3 channels

4 channels

3 channels

University of Basel 55Diffusion Models in Medical Imaging, 30.01.2024



Palette: Image-to-Image Diffusion Models

Saharia, Chitwan, et al. "Palette: Image-to-image diffusion models." ACM SIGGRAPH 2022 Conference Proceedings. 2022.
56



Text Conditioning

CLIP
Dall-E
Stable Diffusion
Imagen
...

Saharia, Chitwan, et al. "Photorealistic text-to-image diffusion models with deep language understanding." Advances in Neural Information Processing 
Systems 35 (2022): 36479-36494.

57



Architecture - Conditioning

• Transformers Cross-Attention

• We use the text embedding to 
generate the key / value pair.

• We use the image embedding for 
the query.

Jaegle et al (2022). Perceiver IO: A General Architecture for Structured Inputs & Outputs. In ICL. 58



Text Conditioning

Hertz, Amir, et al. "Prompt-to-prompt image editing with cross attention control." arXiv preprint arXiv:2208.01626 (2022).
https://deepsense.ai/diffusion-models-in-practice-part-1-the-tools-of-the-trade/

59



Text Conditioning

https://deepsense.ai/diffusion-models-in-practice-part-1-the-tools-of-the-trade/ 60

https://deepsense.ai/diffusion-models-in-practice-part-1-the-tools-of-the-trade/


• We pretrain a diffusion model with text prompts.
• We freeze this model.
• We fine-tune a copy conditioned on 𝒄.
• We pass information to the frozen model 

through skip connections.

Zhang, Lvmin, Anyi Rao, and Maneesh Agrawala. "Adding conditional control to text-to-image diffusion models." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.

ControlNet

61



ControlNet

62

conditioning image



DreamBooth

Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., & Aberman, K. (2023). Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. CVPR 63
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Agenda

q Introduction to Diffusion Models [~30 min]
qPhysical Intuition & General Concepts
qDenoising Diffusion Probabilistic Models
qA Score-Based View on Diffusion Models

q Advanced Topics [~30 min]
qSampling Strategies
q Inference-time Conditioning
qTraining-time Conditioning

q Applications in Medical Imaging [~30 min]
q Synthesis
q Inpainting
q Segmentation
q Anomaly Detection
q Reconstruction
q Registration
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Image Synthesis

Examples from the Community

University of Basel 65Diffusion Models in Medical Imaging, 30.01.2024

SyntheticReal



Why? Medical Images are Rare!

Data Provider Data Users

Privacy concerns
Costly image acquisition Limited data

University of BaselDiffusion Models in Medical Imaging, 30.01.2024 66



Use of Synthetic Data

Pinaya, Walter HL, et al. "Generative AI for Medical Imaging: extending the MONAI Framework." arXiv preprint arXiv:2307.15208 (2023). 67

What can we use generated images for?

• Full private training
• Data augmentation
• Testing edge cases

Evaluation Criteria:

• Realism
• Diversity
• Privacy



Generating High-Resolution 3D Brain Data

Pinaya, W. H., et al. (2022) Brain image generation with latent diffusion models. In MICCAI Workshop on Deep Generative Models 68

Latent Diffusion Model trained on data from UK Biobank (N = 31,740)
• Allows for the generation of T1-weighted brain MR images with a 

resolution of 160 x 224 x 160

Can be conditioned on covariates like:
• Age 
• Gender
• Ventricular and Brain volumes 



High-Resolution 3D Medical Image Generation with LDMs 

Khader, F., et al. (2023) Denoising diffusion probabilistic models for 3D medical image generation. In Scientific Reports 69

ADNI
(64 x 64 x 64)

DUKE
(256 x 256 x 32)

MRNet
(256 x 256 x 32)

LIDC-IDRI
(128 x 128 x 128)



Fine-Tuning Stable Diffusion

Chambon, Pierre, et al. (2022) RoentGen: vision-language foundation model for chest x-ray generation. arXiv:2211.12737 70

Fine Tuned Stable Diffusion pipeline for text-conditioned chest X-Ray generation

• U-Net and Text Encoder are jointly fine-tuned on the MIMIC-CXR dataset



Packhäuser et al (2022). Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification Systems. arXiv:2211.01323

Generation of Anonymous Chest Radiographs

71

Privacy enhanced sampling strategy for conditional chest X-
Ray generation

• Generated images are not per se private, as generative 
models may memorize training examples

• 1) Generate Image 2) Find most similar one from training 
data 3) Verify if patient is the same → include/exclude



Synthetic Data Augmentation

Ye, J., et al. (2023) Synthetic Augmentation with Large-scale Unconditional Pre-training. In MICCAI 2023 72

1) Pre-training an unconditional Latent Diffusion Model on a large unlabeled dataset
2) Conditional fine-tuning on an unseen labeled (small) dataset through a latent classifier
3)  Selection of the highly-confident synthetic samples based on feature similarity with real data



Synthetic Image Augmentation – Performance Gain

Sagers, L. W., et al. (2023) Augmenting medical image classifiers with synthetic data from latent diffusion models. arXiv:2308.12453 73

• Diffusion models can scalably generate images of skin disease and training models with that augmented data 
improves performance in data-limited settings 

• Performance gains (in this setting) saturate at a synthetic-to-real ratio of 10:1 and is substantially smaller 
than the gains obtained by adding real images → collection of diverse real data remains more important



Synthetic Data for Distribution Shifts – Improving Fairness in AI

Ktena, I., et al. (2023) Generative models improve fairness of medical classifiers under distribution shifts. arXiv:2304.09218. 74

• Learning realistic augmentations from data is possible in a label-efficient manner using diffusion models 

• Unlabeled data can be used to capture the data distribution of different conditions and subgroups → steer the 
distribution of synthetic examples according to specific requirements

• Learned augmentations can surpass heuristic, manually implemented ones by making models more robust 
and statistically fair in- and out- of-distribution



Synthesising Rare Samples – Testing Edge Cases 

Frisch, Y., et al. (2023) Synthesising Rare Cataract Surgery Samples with Guided Diffusion Models. MICCAI 2023 75

• Diffusion model is used to synthesize rare cases in instrument classification in cataract surgery

• Performance gain of > 10% for rare cases



Inpainting

Examples from the Community

University of Basel 76Diffusion Models in Medical Imaging, 30.01.2024



Friedrich, P., et al. (2023) "Point Cloud Diffusion Models for Automatic Implant Generation." MICCAI 2023.

Point Cloud Diffusion Models for Automatic Implant Generation

77

• Implant generation as shape completion task (basically 3D inpainting)
• Applying the diffusion model to high-resolution volumes (512 x 512 x 512) is impossible due to limited GPU 

memory
• Diffusion models can be applied to a wide variety of different data types (like point clouds)



Point Cloud Completion with Diffusion Models

78Friedrich, P., et al. (2023) "Point Cloud Diffusion Models for Automatic Implant Generation." MICCAI 2023.



Image Segmentation

Examples from the Community

University of Basel 79Diffusion Models in Medical Imaging, 30.01.2024



(*)

The anatomical information is added by concatenating the input images 𝑏 to the noisy segmentation mask 𝑥5,! in
every step t.

Diffusion 
Model

Diffusion Models for Segmentation Mask Generation

80Wolleb et al (2022). Diffusion Models for Implicit Image Segmentation Ensembles, MIDL 2022. arXiv:2112.03145



Generation of Segmentation Ensembles

81Wolleb et al (2022). Diffusion Models for Implicit Image Segmentation Ensembles, MIDL 2022. arXiv:2112.03145



3D Segmentation with PatchDDM

Bieder et al. (2023) Memory-Efficient 3D Denoising Diffusion Models for Medical Image Processing. MIDL

• We add a position encoding in all 3 spatial dimensions.
• Training is on patches only, and saves memory and training time.
• Inference runs over the whole 3D volume.
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Ambiguous Segmentation

Rahman, Aimon, et al. (2023) Ambiguous medical image segmentation using diffusion models. CVPR

• Ambiguity Modelling 
Network (AMN) models the 
distribution of ground truth 
masks given an input 
image.

• Ambiguity Controlling 
Network (ACN) models the 
noisy output from the 
diffusion model conditioning 
on an input image.
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Segmentation with Diffusion Pre-training 

Rousseau et al. (2023) Pre-Training with Diffusion models for Dental Radiography segmentation. MICCAI 2023 84
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Unsupervised Anomaly Segmentation

Latent Diffusion Model (LDM) learns the distribution of healthy brain data
Compression (VQ-VAE) scales for high-resolution images

Pinaya et al (2022). Fast Unsupervised Brain Anomaly Detection and Segmentation with Diffusion Models. DOI:10.1007/978-3-031-16452-1_67

LDM identify regions with 
a low likelihood of being 
part of the healthy dataset

Reverse/denoising
process is used to inpaint
these regions and “heal” 
the possible anomalies
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Anomaly Detection with Simplex Noise
simplex noise scale controls target anomaly size

Wyatt et al (2022) AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic Models using Simplex Noise. CVPR workshop

• Typical Gaussian noise is found to be 
insuffient for anomaly detection.

• Therefore, we explore the use of simplex 
noise for the corruption and sample 
generation of medical images.
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Anomaly Detection with Coarse Noise

Kascenas et al (2023) The role of noise in denoising models for anomaly detection in medical images. Medical Image Analysis 88



Anomaly Detection from Patches

Behrendt, Finn, et al. (2023) "Patched diffusion models for unsupervised anomaly detection in brain mri." Medical Imaging with Deep Learning 89



Mask, Stitch, and Re-Sample

90Bercea, C et al. (2023). Mask, Stitch, and Re-Sample: Enhancing Robustness and Generalizability in Anomaly Detection through Automatic Diffusion Models. arXiv preprint arXiv:2305.19643.



Weakly Supervised Lesion Detection

Goal: Pixel-wise anomaly detection using image-level labels only

Healthy Unhealthy

91



Weakly Supervised Lesion Detection

Set of images of a 
healthy control 

group

Set of patients 
affected by a 

specific disease

Unpaired image-to-image translation

differenceimage of a patient
_

healthy reconstruction
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Weakly Supervised Lesion Detection

Wolleb et al (2022). Diffusion Models for Medical Anomaly Detection, MICCAI 2022. arXiv:2203.04306

Gradient GuidanceDDIM 
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Lesion Localization with Classifier-free Guidance

Latent Space Original
Image

Healthy 
Counterfactual Heatmap

Sanchez et al (2022). What is Healthy? Generative Counterfactual Diffusion for Lesion Localization. DGM4MICCAI 2022. arXiv:2207.12268 94

DDIM Encoding - Empty condition DDIM Decoding - Target class
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Published as a conference paper at ICLR 2022

Figure 2: Linear measurement processes for sparse-view CT (left) and undersampled MRI (right).

in medical imaging applications. Without loss of generality, we assume that the linear operator A has
full rank, i.e., rankpAq “ minpn,mq “ m. The result below gives the alternative formulation of A:
Proposition 1. If rankpAq “ m, then there exist an invertible matrix T P Rnˆn

, and a diagonal

matrix ⇤ P t0, 1unˆn
with trp⇤q “ m, such that A “ Pp⇤qT . Here Pp⇤q P t0, 1umˆn

is an

operator that, when multiplied with any vector a P Rn
, reduces its dimensionality to m by removing

each i-th element of a for i “ 1, 2, ¨ ¨ ¨ , n if ⇤ii “ 0.

We illustrate this decomposition for CT/MRI in Fig. 2. Many measurement processes in medical
imaging share the same T , even if they correspond to different A. For example, T corresponds to
the Radon transform and Fourier transform in sparse-view CT and undersampled MRI respectively,
regardless of the number of measurements, i.e., CT projections and k-space downsampling ratios.
For both sparse-view CT reconstruction and metal artifact removal for CT images, the operator T is
the Radon transform (see Fig. 8). Intuitively, diagp⇤q can be viewed as a subsampling mask on the
sinogram/k-space, and Pp⇤q subsamples the sinogram/k-space into an observation y with a smaller
size according to this subsampling mask. In addition, we note that T´1 can be efficiently implemented
with the inverse Radon transform or the inverse Fourier transform in CT/MRI applications.

3.2 INCORPORATING A GIVEN OBSERVATION INTO AN UNCONDITIONAL SAMPLING PROCESS

In what follows, we show that the decomposition in Proposition 1 provides an efficient way to generate
approximate samples from the conditional stochastic process txt | yutPr0,1s with an unconditional

score model s✓˚ px, tq. The basic idea is to “hijack” the unconditional sampling process of score-
based generative models to incorporate an observed measurement y.

As we have already discussed, it is difficult to directly solve txt | yutPr0,1s for sample generation.
To bypass this difficulty, we first consider a related stochastic process that is much easier to sample
from. Recall that p0tpxt | x0q “ N pxt | ↵ptqx0,�2ptqIq where ↵ptq and �ptq can be derived from
fptq and gptq (Song et al., 2021). Given the unconditional stochastic process txtutPr0,1s, we define
tytutPr0,1s, where yt “ Axt ` ↵ptq✏. Unlike txt | yutPr0,1s, the conditional stochastic process
tyt | yutPr0,1s is fully tractable. First, we have y0 “ Ax0 ` ↵p0q✏ “ Ax0 ` ✏ “ y. Since
p0tpxt | x0q “ N pxt | ↵ptqx0,�2ptqIq, we have xt “ ↵ptqx0 ` �ptqz, where z P Rn „ N p0, Iq.
By definition, yt “ Axt ` ↵ptq✏, so we have yt “ Ap↵ptqx0 ` �ptqzq ` ↵ptq✏ “ ↵ptqpy ´ ✏q `
�ptqAz ` ↵ptq✏ “ ↵ptqy ` �ptqAz. Therefore, we can easily generate a sample ŷt „ ptpyt | yq
by first drawing z „ N p0, Iq and then computing ŷt “ ↵ptqy ` �ptqAz.

The key of our approach is to modify any existing iterative sampling algorithm designed for the
unconditional stochastic process txtutPr0,1s so that the samples are consistent with tyt | yutPr0,1s. In
general, an iterative sampling process of score-based generative models selects a sequence of time
steps t0 “ t0 † t1 † ¨ ¨ ¨ † tN “ 1u and iterates according to

x̂ti´1 “ hpx̂ti , zi, s✓˚ px̂ti , tiqq, i “ N,N ´ 1, ¨ ¨ ¨ , 1, (5)

where x̂tN „ ⇡pxq, zi „ N p0, Iq, and ✓˚ denotes the parameters in an unconditional score model
s✓˚ px, tq. Here the iteration function h takes a noisy sample x̂ti and reduces the noise therein to
generate x̂ti´1 , using the unconditional score model s✓˚ px, tq. For example, for the Euler-Maruyama
sampler detailed in Algorithm 1, this iteration function is given by

hpx̂ti , zi, s✓˚ px̂ti , tiqq “ x̂ti ´ fptiqx̂ti{N ` gptiq2s✓˚ px̂ti , tiq{N ` gptiqzi{
?
N.

Samples obtained by this procedure tx̂tiuNi“0 constitute an approximation of txtutPr0,1s, where
the last sample x̂t0 can be viewed as an approximate sample from p0pxq. Most existing sampling

5



Score-based Diffusion Models for Accelerated MRI 

96Chung et al. (2021) Score-based diffusion models for accelerated MRI. MIA 2021



Undersampled MR Reconstruction via Diffusion Model Sampling

97
Peng, C., Guo, P., Zhou, S. K., Patel, V. M., & Chellappa, R. (2022). Towards performant and reliable undersampled MR reconstruction via diffusion model sampling. MICCAI 2022



K-space Cold Diffusion

University of Basel 98

Shen, G., Li, M., Farris, C. W., Anderson, S., & Zhang, X. (2023). K-space Cold Diffusion: Learning to Reconstruct Accelerated MRI without Noise. arXiv preprint arXiv:2311.10162.



Image-to-Image Translation
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MRI Contrast Translation



Durrer, Alicia, et al. "Diffusion Models for Contrast Harmonization of Magnetic Resonance Images." arXiv preprint arXiv:2303.08189 (2023).

3T 1.5T

Bad comparibility

Diffusion Models for Contrast Harmonization
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Input Ground Truth Diffusion Model Output

Contrast Harmonization Results

101Durrer, Alicia, et al. "Diffusion Models for Contrast Harmonization of Magnetic Resonance Images." arXiv preprint arXiv:2303.08189 (2023).



Waibel, D. J., Röell, E., Rieck, B., Giryes, R., & Marr, C. (2023, April). A diffusion model predicts 3d shapes from 2d microscopy images. In 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) (pp. 1-5). IEEE.

3D Shapes from 2D Microscopy
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3D with 2D model

Zhu, Lingting, et al. (2023) Make-A-Volume: Leveraging Latent Diffusion Models for Cross-Modality 3D Brain MRI Synthesis. MICCAI 103



Image Registration
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DiffuseMorph
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105
Kim et al (2022). DiffuseMorph: Unsupervised Deformable Image Registration Along Continuous Trajectory Using Diffusion Models. ECCV 2022



Thank you!
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Center for medical Image Analysis & Navigation (CIAN), Prof. Philippe C. Cattin
Universität Basel



Useful Key References, Gits to Watch, etc.

Surveys
• https://arxiv.org/abs/2209.02646
• https://arxiv.org/abs/2209.00796

Github
• https://github.com/heejkoo/Awesome-Diffusion-Models

Tutorials
• https://cvpr2022-tutorial-diffusion-models.github.io
• https://huggingface.co/blog/annotated-diffusion
• https://huggingface.co/docs/diffusers
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